Test Beam Study of FPID Impact on Fwd-EMC

SuperB Detector Geometry Task Forces joint Meeting CalTech 15/12/2010

> S. Germani INFN Perugia

Intro

A prototype 5x5 LYSO crystals matrix has been tested at the CERN T10 beam test facility in October 2010.

Among other things a study of the effect of the material in front of the calorimeter has been performed:

- Alluminium: 20mm, 40mm and 80mm
- Quartz: 5mm, 15mm and 30mm
- Active Quartz Bar (DIRC like)

see A. Rossi talk: <u>http://agenda.infn.it/getFile.py/access?contribId=101&sessionId=7&resId=0&materialId=slides&confId=2902</u>

CAVEAT: Test beam data analysis is not yet completed (PRELIMINARY results)

TB Matrix

TB Matrix is very close to the final design of a Fwd-Endacp EMC Module:
>5x5 crystals
>Projective geometry
>Glass fiber structure
>20 crystals instrumented with APDs
>5 crystals instrumented with PIN diodes

CalTech - 15/12/2010

TB upstream matererial studies

LYSO Crystal

Each crystal was painted with a 15mm black strip on the smaller end to keep uniformity within 5%

- For a better uniformization each crystal need a specific black strip width
- Nee to measure uniformity for all the crystals (it was not possible before the TB)

T10 Test Area

- Cherenkov Detector
- Two finger scintillators (2x2 cm²)
- 4 Si planes (2x and 2y)
- LYSO Matrix

Simulation Geometry

All elemets of the T10 line have been included in the simulation geometry

Simulated Effects

- Crystals LY non-uniformity
 - Use Gauss distribution to assign non uniformity from RY measuremnts
 - Mean = 4.5% RMS = 0.6%
- Photstatistics
 - 450 PE/MeV
- Intercalibartion Error
 - Default is 1% (maybe to small)
 - Need to be estimated correctly
- Beam Energy Spread
 - 0.7% from T10 line desciprtion
- Noise and Signal
 - Use measured noise PS for each crystal (from Marvo Vignati)
 - Use ADC counts/MeV as measured in the data
 - Emulate ADC sampling procedure
 - Add fixed shape Gauss function to random noise accoriding to PS and noise RMS

Noise + Signal simulation

Signal Amplitude = Peak height

Energy Center of Gravity

Position (0,0) equal to the left bottom corner of te matrix

MC beam position need to be optimized but COG distributions between Data and MC look similar

CalTech - 15/12/2010

TB upstream matererial studies

Crystals Multiplicity and Measured Energy

 Multiplicity:
 →Number of crystal with a signal maximum value greater than 6 ADC counts (3*σ_{noise})
 Measured Energy:
 →Sum of the energy of all the crystals above threshold

CalTech - 15/12/2010

TB upstream matererial studies

Fit to Measured Energy Distributions

A Crystal Ball function fit is performed to the measured energy distribution

The energy resolution resolution is taken as the FWHM/2.36

Resolution vs Quartz Thickness

Difference between Data and MC need to be understood

Data and MC agree that relative resolution change is small or negligible

Conclusions

- Several effects have been included in the simulations but more work and tuning is needed to reach Data – MC agreement on the energy resolution
- Even if basic resultion is different in the range up to 0.25% X0 upstream material effects are small for both Data and MC
- From previous studies on the full geometry we have seen that the clustering algorithm enhance the effect of upstream material on the energy resolution in a significant way. There is no clustering algorithm in the TB analysis.