CERN T10 Test Beam Simulation

SuperB EMC session Pasadena 14/12/2010

> S. Germani INFN Perugia

Intro

• Aim:

MC Study on TB matrix resolution effects

- Beam
 - 1→4.5 GeV e-
 - 2x2 cm beam on central crystal (12)
- Strategy:
 - Try to include all known effects
 - Noise
 - Beam Energy Spread
 - Intercalibration Error
 - Photostatistics
 - Crystals LY non-uniformity
 - Generate ntuples to process TB data and MC with the same code

Simulation Geometry

• All elemets of the T10 line have been included in the simulation geometry

Simulated Effects

- Crystals LY non-uniformity
 - Use Gauss distribution to assign non uniformity from RY measuremnts
 - Mean = 4.5% RMS = 0.6%
- Photstatistics
 - 450 PE/MeV
- Intercalibartion Error
 - Default is 1% (maybe to small)
 - Need to be estimated correctly
- Beam Energy Spread
 - 0.7% from T10 line desciprtion
- Noise and Signal
 - Use measured noise PS for each crystal (from Marvo Vignati)
 - Use ADC counts/MeV as measured in the data
 - Emulate ADC sampling procedure
 - Add fixed shape Gauss function to random noise accoriding to PS and noise RMS

Noise + Signal simulation

Signal Amplitude = Peak height

Pasadena - 14/12/2010

Resolution vs Energy

Resolution from Crystal Ball function fit (FWHM/2.36)

Peak Position vs Energy

•Peak position is different between Low and High APD gain configurations •Small dependence of E_{peak}/E_{beam} with beam energy

Crystal Multiplicity vs Energy

•Peak position is different between Low and High APD gain configurations •Small dependence of E_{peak}/E_{beam} with beam energy

Resolution vs Beam Energy Spread

Significant dependece of resolution on bema energy spread
To have a significant impact at Low Gain the spread should be more the twice the nominal one

•Beam spread knowledge may be an issue for High Gain simulation accuracy

Peak Position vs Beam Energy Spread

Resolution vs Beam Position

Small dependence of resolution on beam position
Need to tune exctly the position according to TB data
Position may change between different runs at the same energy

Pasadena - 14/12/2010

Resolution vs Intercalibration Error

Precise Intercalibration Error estimate may be an issue for High APD gain

Pasadena - 14/12/2010

Peak Position vs Intrecalibration Error

Peak Position is largely affected by intercalibration error

Pions MIP Peak vs Crystal

Intrisic MIP peak spread seems no toi be an issue

Resolution vs Upstream Material X0

Conclusions

- Noise oscillations, intercalibration error and beam energy spread have not negligible effect on resolution especially for High APD gain
 - Precise estiamte of intercalibartion error is needed
- See MC-Data comaprisons in Alessandros's Talk