

Bulling Gulling Control of the Contr

G. Eigen, U. Bergen

Outline

- Prototype preparations
- New MPPC with excellent radiation hardness properties
- Particle Identification

Prototype Preparations

- I applied for a grant of 210k NOK (~35k USD)
- About 12k USD should be used to pay a master student to help with with stacking and testing of the prototype
- The rest is meant for purchasing high precision power supplies and other small items and travel for 3-4 persons for 2 test beam periods
- Gigi told me yesterday that he has 50 m of Y11 fiber left and will send it after the meeting
- This is not enough, so I need to get some samples somewhere else

Pb Plates

- The 24 Pb plates machined to the right shape are in Bergen
- The packing from the company to CERN was terrible
- Plates have a lot of dents and scratches

- The packing from CERN to Bergen was not good either
- Plates were in a box but could move around in the box

First Strip

- First radial strip milled with old machine
- The groove for the MPPC is visible
- There is some nasty residual glue we try to wash off

Computer-controlled Milling Machine

- The machine shop in Bergen has a computer-controlled milling machine
- Dominik Fehlker,
 our electronics
 engineer has
 programmed 48
 left-handed spirals
 and 48 right-handed
 spirals in Pro Engineer
- Dominik is transferring one spiral from Pro Engineer to the milling machine

Properties of New MPPC's

- Hamamatsu has produced two new photo sensors with 2500 pixels
 and 4489 pixels
- These have larger dymanic range but smaller gain

MPPC type	# cells 1/mm²	C, pF	R _{cell,} kOhm	C _{cell} , fF	τ=R _c xC _c ,	VB, V T=23 C	V _{op} , V T=23 C	Gain(at V _{op}), X10 ⁵
15 μm pitch	4489	30	1690	6.75	11.4	72.75	76.4	2.0
20 μm pitch	2500	31	305	12.4	3.8	73.05	75.0	2.0
25 μm pitch	1600	32	301	20	6.0	72.95	74.75	2.75
50 μm pitch	400	36	141	90	12.7	69.6	70.75	7.5

Expected n Flux

- Take values from Eugeneo's values from Annecy talk
- In layer 0 of backward IFR EC, worst rate is 3500 Hz/cm²
 - → rate a z=-128 cm should be be lower
- In ten years (200 days running) estimate 6.1*10¹¹ n/cm² or 6.1*10⁹ n/mm²
- This high flux is only in the inner region (r=31-41 cm)
- The rate drops by significantly towards outer edge
- If n's come from IP, MPPC is perpendicular to flight path

Performance of 15 µm MPPC after 10¹³ n/cm²

The new MPPCs have lower efficiency (more boundaries) and need higher bias voltage to compensate for loss

There is also a new SiPM from China (NDL) that looks good too

Performance of 15 µm MPPC after 10¹³ n/cm²

- 15 μm MPPCs still work fine
 after 10¹³ n/cm² irradiation
- Saturation curve is not effected
- Response decreases by 40%

Performance of 15 µm MPPC after 1013 n/cm2

- S/N and equivalent noise charge after irradiation looks ok
- According to Eugenio's study backward endcsp EMC will see 109 n/mm² after 10 years

- So if the 25 μm pixel MPPC
 show a problem we switch to
 20 μm pixel or 15 μm pixel
 MPPCs
 - → here we have a safety margin of at least 10⁴

Particle Identification

- Do dE/dx pattern recognition for hadrons → for MIP-like particles energy losses are $(dE_{Pb}=4.3 \text{ MeV}, dE_{scint}=0.6 \text{ MeV})$
- A 0.4 GeV π is at the minimum while a 0.4 GeV K is below the minimum
- For MIPs, $\Delta E= 100 \text{ MeV}$ in 24 layers
- For particles below minimum dE/dx increases with depth

⇒ look at dE/dx pattern and combine it dE/dx information from SVT and DCH ⇒ improve K/π separation (3 σ) up to 0.6-0.7 GeV

Particle Identification: ToF

- ToF application → 4 time constants
 - Scintillator τ_{sc} =2.2 ns
 - Y11 fiber τ_{fiber} =2.3 ns
 - MPPC rise time resolution σ_{MPPC} ~0.1 ns
 - transition time in fibert_{fiber} = 2 ns (56 cm)
- MPPC signal is trigger by arrival of first photon
- We have up to 24 measurements
- Need a measurement for spiral strip
- With TOF measurements K/π separation (3 σ) may be improved to >1.2 GeV

