

Filippo Maria Giorgi - INFN Bologna

XV SuperB General Meeting Caltech, CA – USA, Dec. 14-17 2010

- New Matrix Scan Logic (respect to SPX0)
- Triggered Architecture
- Integration achievements
- Optimizations
- Simulations
- 2011 Submissions
- Conclusions

Summary

Respect to previous submission SuperPX0:

- Dense in-pixel digital logic (Time labeling, arbitrary TS comparator for time ordered readout)
- NO Macro-Pixels → no FREEZING required → much less dead area
- NO Scan Buffer (saving RO area) but still time ordered matrix scans
- Smaller BC periods allowed → better time resolution
- Polyvalent Triggered & Data-push architecture

New Matrix Scan Logic

Data-push architecture for pixels on Layer0 requires a lot of output bandwidth. $(100 \text{MHz/cm}^2 \times \sim 20 \text{bit} = \sim 2 \text{ Gbps/cm}^2)$

Some modifications, involving the sweeper architecture only, make possible to exploit the **matrix itself as a hit buffer** for a triggered architecture.

We are evaluating if this solution is viable taking into account the expected maximum trigger latency ($\sim 6 \ \mu s$) of SuperB.

Only triggered time stamps are requested and swept out.

Only triggered time stamps are requested and swept out.

Only triggered time stamps are requested and swept out.

After the latency, a TS-dependent reset is asserted. Only corresponding pixels are reset

After the latency, a TS-dependent reset is asserted. Only corresponding pixels are reset

After the latency, a TS-dependent reset is asserted. Only corresponding pixels are reset

- All the readout architecture is coded in synthesizable VHDL. Now, also the triggered extraction feature of the sweeper.
 Efficiency evaluations conducted with Monte Carlo hit extraction.
- Barrels and Sweeper code optimization for higher speed & lower synthesis time.
 - Full architecture (with optimized components) entirely reintegrated and re-simulated (final matrix dimensions 192x256)
 - Full architecture synthesized in Synopsys environment. Benefits are presented.

Integration achievements

Simulations overview

MC tuned to obtain 100 MHz/cm² hit rate on area

Simulation Results

NOT taken into account:

- sensor efficiency (assumed 100%)
- pixel reset dead time (assumed few ns)

Simulation results DATA PUSH

Expected efficiency combinatorial evaluations

NOT taken into account:

- sensor efficiency (assumed 100%)

- pixel reset dead time (assumed few ns)

Analitic expectation DATA PUSH

- pixel reset dead time (assumed few ns)

Readout de-queuing efficiency 100% (no barrel overflows)

- Hit check results: 100 % match.
- Fast clock **4** x RDclk (output bus frequency)

SuperPX0 comparison

efficiency results from similar simulations of *SuperPX0* readout

0.8

BC period (us)

• Smooth decrease of efficiency in function of trigger latency.

- Almost no dependency of efficiency on BC period (in this region)
- Linear fit slope: -0.3 %/us.

Simulation results, TRIGGERED

• Smooth decrease of efficiency in function of trigger latency.

- Almost no dependency of efficiency on BC period (in this region)
- Linear fit slope: -0.3 %/us.

Simulation results, TRIGGERED

Bandwidth usage estimated by simulations data bus: 20 bit @ 200 MHz bus \rightarrow 4 Gbps max throughput.

•Data push mode

•BC = 100 ns (10 MHz) •Rate = 100 MHz/cm²

mean bandwidth usage of 2.6 Gbps

~22% bandwidth saving thanks to zone clusterization algorithm and time bundling of hits. (respect to APSEL 4D standard *xyt* hit word encoding)

Triggered mode

BC = 100 ns (10 MHz)
Rate = 100 MHz/cm²
Trigger Rate = 2.5 MHz (largely overestimated, 1 trig. every 4 BC)
mean bandwidth usage of 660 Mbps
(corresponding to ~40 Mbps for a standard 150 kHz trigger rate).

Simulation results: BANDWIDTH

Barrel and Sweeper were described in high-level VHDL code.

- Synthesis slow
- Generated net-list was not optimized \rightarrow improvable speed performances
- Thesis on code optimization, to be discussed this week in Bologna.
 - Barrels and Sweeper rewritten almost at hardware level.
 - Evident performance improvements are reported by the Synopsys Design Compiler tool.

Barrels speed optimization Worse reg. to reg. signal propagation time

Sweeper speed optimization Worse reg. to reg. signal propagation time

Full chip synthesis time optimization

Full chip cells area

Total cells area comparison

SuperPX1 hybrid 3D

- Matrix 32x128
- 2 sub-matrices 16x128
- 4 sparsifiers
- 8 zones for each sparsifier
- zone width: 4 pixels

• APSEL-VI MAPS 3D

- Matrix 96x128 (96x96)
- 2 sub-matrices 48x128 (48x96)
- 4 (3) sparsifiers
- 8 zones for each sparsifier
- zone width: 4 pixels

Submissions 2011

- Triggered architecture successfully implemented and simulated.
 - 98.2 % readout efficiency at 6 us trigger latency.
 - BC period down to 60 ns.
 - No BC dependency of efficiency in the foreseen triggered working conditions.
- Optimizations lead to faster readout circuits and faster synthesis time.
- Total area after new features and optimization → only 7% larger.
- Next step: architecture tailoring for SuperPX1 and APSEL_VI

Conclusions

- DAQ boards responsible for trigger handling
- Pre-processed trigger sent to Front-end electronics.
 - Simpler on-chip trigger logic
 - Re-configurable logic on DAQ boards
- One-wire trigger to FE chips.
- Trigger latency configured on FE chips at start-up.
- Chip trigger signal synchronous to BC clock.

Sweeper speed optimization

Full chip speed optimization

Barrels speed optimization

EXAMPLE

During Time Window 2 :

- Some pixels getting fired and labeled with Time Stamp (TS) =2
- The readout queries the columns containing hits labeled with TS=1 (**Reading Time Window** \rightarrow FastOr activation)
- The readout moves the Active Column over the columns with an active FastOr.

Matrix scan Logic example