
Introduction Status Plans

Building tools for SuperB

Marco Corvo

CNRS and INFN

Caltech XV SuperB General Meeting

December 16, 2010



Introduction Status Plans

Current build system

SoftRelTools was the standard in BaBar, but it has several
limitations. Besides technologies have improved since SRT was
developed.
SRT issues:

SRT changed a lot over years

It supports very old and no more used OSes and software

Hand written Makefiles, which are difficult to manage and
debug

Impractical code dependencies and complex dependency
management (what goes where, etc.)

Online/SRT base issues where you want most flexibility &
agility depended on this huge blob of SRT base

In other words: difficult to clean up or reorganize, Better to write
from scratch



Introduction Status Plans

Solution(s) for these issues

1 Write SRT from scratch

Possible, but not very practical (at least in terms of man
power)

2 Use available third party tools

Autotools
SCons
CMake



Introduction Status Plans

What are Autotools?

Pros

Complete tool chain of several programs, each with different
”macro” syntax

Easy to use for users (./configure && make && make install)

Cons

Same as point one of Pros (too many programs)

Creates big build scripts and helper files even for a hello world
example

Hard to extend, hard to understand



Introduction Status Plans

Autotools flowcharts



Introduction Status Plans

What is Scons?

SCons is an Open Source software construction tool: it’s a
cross-platform substitute for the classic Make utility with
integrated functionality similar to autoconf/automake and compiler
caches such as ccache.

Written in Python (a real OO programming language)

Reliable, automatic dependency analysis built-in for C, C++
and Fortran

Built-in support for C, C++, D, Java, Fortran, Yacc, Lex, Qt
and SWIG, and building TeX and LaTeX documents

Improved support for parallel builds

Very similar to CMake (features, cross platform support,
behaviour) has the advantage of being written in Python. From
my experience not so intuitive as CMake. Need to spend some
time to get comfortable with it.



Introduction Status Plans

What is CMake?

1 Generates native build environments

UNIX/Linux: Makefiles
Windows: VS Projects/Workspaces
Mac OS: Xcode

2 Opensource

3 Cross-platform

4 Integrates testing and packaging systems



Introduction Status Plans

CMake features

1 Manage complex, large build environments (KDE4)
2 Very Flexible and Extensible

Support for Macros
Modules for finding/configuring software (bunch of modules
already available)
Extend CMake for new platforms and languages
Create custom targets/commands
Run external programs

3 Very simple, intuitive syntax

4 Support for regular expressions (*nix style)

5 Support for In-Source and Out-of-Source builds

6 Cross Compiling

7 Integrated Testing and Packaging (Ctest, CPack)



Introduction Status Plans

Why Use CMake?

Pros

1 CMake depends only on C++ compiler

2 CMake supports great variety of platforms (basically every
*ix, Mac OS, Windows)

3 CMake generates only Makefiles for all supported platforms

4 CMake additionally can produce project files for IDE’s
(KDevelop, XCode, VStudio)



Introduction Status Plans

Why Use CMake?

Pros (cont’d)

1 More usefull error messages when making a mistake in editing
input files

2 Easy to use configure-like framework

3 CMake has simple syntax

4 CMake has a testing framework

5 CMake is faster than autotools (does not use libtools)

Furthermore, talking with CMS people, they also would use CMake
if they were to write from scratch their build system



Introduction Status Plans

Why Use CMake?

Special interesting features
CMake combines further subsystems

1 CTest: used to automate updating (using CVS for example),
configuring, building, testing, performing memory checking
and submitting results to a CDash or Dart dashboard system

2 CPack: software packaging tool which can be used with or
without CMake and is able to generate many different flavours
of installers (RPM, Debian, DragNDrop, PackageMaker)

3 CDash: CDash is an open source, web-based software testing
server. CDash aggregates, analyzes and displays the results of
software testing processes submitted from clients located
around the world. Developers depend on CDash to convey the
state of a software system.



Introduction Status Plans

Current status of FastSim build

Currently the prototype to build SuperB software with CMake
works with the Head (trunk) of FastSim V0.2.6

We forsee to release a FastSim V0.2.7 with fully working
CMake support (likely in January) with the following features:

Full build of a Release
Build of single package or bunch of packages based on a given
release
Support for Linux SL4 and SL5. We still have problems with
Mac OSX due to some link issue



Introduction Status Plans

Current status of FastSim build

CMakeLists files in place for every FastSim package

Bunch of CMake macros and scripts to configure the release

Third party packages configuration and management (CLHEP,
Root. . . )
Specific platform settings (compiler definitions and flags)
Bash script to run cmake executable in a more friendly way

Already ongoing tests using the CTest framework



Introduction Status Plans

Short term

First impression and first experience with FastSim is good.
CMake is simple to use, flexible and has a large number of
modules to set up and manage third party software (for
FastSim I used CMake modules to configure Root, CLHEP
and Boost libs)

Current system is still a prototype which needs further and
deeper work in order to turn it into a stable and widely usable
one, in particular in relation to Mac OSX linking issues



Introduction Status Plans

Future plans

Future plans (next 2/3 months) consider developing prototypes
with CMake combined with CPack (low priority by now), CTest
and CDash (higher priority)

1 CTest

Useful to configure, build, test, perform memory check (e.g.
via Valgrind)
Submits results to a CDash web site

2 CDash

Stores build information (history, failures, warnings, logs)
Useful (also) to set up alarms, notifications and build statistics

3 CPack

CPack can be used also without CMake as a standalone tool
Same syntax as CMake
Support for many different package generators (RPM, Debian,
OSX, Cygwin)



Introduction Status Plans

CDash set up in Padova



Introduction Status Plans

CDash set up in Padova



Introduction Status Plans

CDash set up in Padova


	Introduction
	CMake Intro

	Status
	Status

	Plans
	Short term
	Medium/Long term


