Bruno Final Focus Modeling and some Background Studies

Alejandro Pérez E. Paoloni INFN – Sezione di Pisa

Outline

- Final focus validation (v12 sf10 alyout)
- Final focus quality test
- Touschek background strategy
- Pair background and SVT occupancy (a rough estimate)
- Summary and outlook

Final Focus Validation: The method (I)

- Use final focus v12 sf10 layout
- Generate particles (10k) with the beam parameters (HER and LER) at the IP:
 - All particles are generated at Z = 0 and at the nominal beam energy

- Feed this particles into Bruno which transport them into the final focus field
- Builds special scoring geometry to study beam optics (see next slides)
- Goal: comparison with design values

Final Focus Validation: The method (II)

- Can sketch down and up stream HER and LER magnetic modeling
 - Downstream: shoot particles with nominal parameters
 - **Upstream:** shoot particles with nominal parameters inverting momenta and charge

Final Focus Validation: The method (III)

Build 100 scoring concentric cylinders (material is vacuum) along Z axis

- Half lengths from 5 cm to 5 m. Step size is 5cm.
- Radius from 40 cm to 50 cm. Step size is 1 mm.
- Use end-caps of scoring cylinders to sketch beam parameters as a function of Z coordinate
- Can calculate in this way quantities like:
 - Beam sizes and angular dispersion (σ_x , $\sigma(X')$ and σ_y , $\sigma(Y')$) scoring

Final Focus Validation: Results HER (I)

HER: X and X' for Z scoring end-cap at 175 cm from IP

Final Focus Validation: Results HER (II)

Final Focus Validation: Results HER (III)

Final Focus Validation: Results HER (IV)

Final Focus QA tests

- Off energy particles through the beam pipes:
 - HER: Energy scan from 1.0GeV to 7.0GeV (step size 1.0GeV)
 - LER: Energy scan from 0.5GeV to 4.0GeV (step size 0.5GeV)
- Use the concentric cylinders scoring boundaries to sketch the beam parameters: $\sigma_x \sigma(X')$ and $\sigma_y \sigma(Y')$

Radiative Bhabha events:

- Use beam pipes as scoring boundaries
- Study the minimum energy transfer to the photon (ΔE/E|_{min}) of those interactions that produces a hit in the beams
- Can estimate the optimal $\Delta E/E|_{min}$ parameter for full simulation radiative Bhabha production

Final Focus QA: HER Off-energy particles

Final Focus QA: LER Off-energy particles

Final Focus QA: Radiative Bhabhas Study

- Simulate Bhabha interactions (10k) at the IP with $\Delta E/E|_{min} = 1.0$
- Study location of hits at the beam pipes (1st hit)
- Study as well the $\Delta E/E$ distribution for those interactions that produce a hit

\Rightarrow input for full sim. Bhabha production

0

Z [mm]

Finds that only those interactions with $\Delta E/E > 0.5$ produce a hit

500

400

300

200

-200

-300

-400

-500

-10000

-5000

Touschek Background Strategy (I)

The Bruno primaries: Manuela Boscolo developed a program to

- Simulate both Touschek and the beam gas scattering along the beam line
- Transport the scattered particles along the lattice
- Detect the collisions of these particles with the beam pipes (scoring planes)

Typical output:

Touschek Background Strategy (II)

- Manuela program gives Touschek primaries outside the beam pipes
- Use Bruno to backtrack those primaries inside the beam pipe:
 - Use final focus geometry only
 - Use beam pipes as scoring boundaries
 - Invert momentum and charge of primaries for Bruno backtracking
- Use backtracked primaries with Inverted momentum and charge as full sim.
 Losses near the IP (LER)
- The method works for most of Manuela's primaries
- There is a small fraction that are missed in the backtracking
- Needs to agree on the final focus magnetic modeling and pipes geometry

Alejandro Pérez, Accelerator V - IR & Back

Pairs backgrounds and SVT occupancy

- Pairs is an important background for SVT
- There is a disagreement between SuperB and Belle rates estimates (a factor of 10)
- Use Fast sim. to generate pairs production events
- Make an geometrical estimation of these rates by using SVT like boundaries (40):
 - radii go from 15 to 200mm (step size 5mm)
 - polar angle covers 100mrad in Fwd/Bwd
- Estimate rate vs radii

3e+07

2.5e+07

2e+07

1.5e+07

1e+07

5e+06

C

1.2

1.4

1.6

1.8

Radius (cm)

2

2.2

2.4

Rate (Hz/cm^2)

 Obtains results in agreement with previous SuperB estimation

Previous SuperB

Pairs rate estimation

Summary and outlook

- A validation machine for the Bruno final focus simulations is now in place
- Machinery can be used to
 - Check the field configuration $\Rightarrow \sigma(X), \sigma(Y), \sigma(X'), \epsilon$ and β as a function of Z
 - Check the input geometry of pipes and magnets

Final focus quality test

- Scanned off-energy particles
 - > Only very off-energy particles deviate significantly from nominal trajectory
 - > Beam sizes increase as particles energies deviate from nominal
- Radiative Bhabha events
 - > Only those interactions with $\Delta E/E > 0.5$ produce a hit at the beam pipes

Touschek background strategy

- The method is already in place
- Needs to agree with Manuela in the magnetic model and beam pipes geometry
- Pair production background rates at SVT
 - Machinery to produce pair backgrounds for Bruno using Fast sim.
 - Rough rate estimation in agreement with previous SuperB estimation

Alejandro Pérez, Accelerator V -IR & Background parallel session, Dec. 15th 2010

Final Focus Validation: Results LER (I)

Final Focus Validation: Results LER (II)

Final Focus Validation: Results LER (III)

