

Outline

- **C** Introduction
- **E** Design of the backward endcap EMC
- Cost Estimate and manpower
- **Expected TOF performance**
- **Measurements of similar calorimeters**
- **€** Construction of a prototype
- R&D results in Bergen

Introduction

- Since in SuperB the asymmetry of beam energies is reduced to \bullet 4 GeVx7 GeV from 3.1 GeVx9 GeV, the rear region of the detector gains more importance than in BABAR
	- \rightarrow need a more hermetic 4π detector than BABAR
- In addition, one important physics goal in SuperB is to exploit the recoil of fully reconstructed B decays
	- Analyses like $B\rightarrow \tau v$, $B\rightarrow K^{(*)}vv$ and $B\rightarrow X_s\ell\ell$ profit significantly from a hermetic detector, since E_{miss} is improved
	- For final states with a $\mathsf{K^0}_\mathsf{L}$, backgrounds are reduced
	- For inclusive $B \rightarrow X_s \gamma$ the π^0 veto is improved
	- \bullet Due to high angular resolution, π^0 reconstruction may be possible
- \bullet Since we do not have background measurements at 10³⁶ cm⁻²s⁻¹ a backward endcap EMC is an important element to determine E_{miss}
- Plan to build a sampling calorimeter that has an energy resolution 18%/ \sqrt{E} or better

Present Backward EC Calorimeter Design

- \bullet The backward endcap calorimeter is a 12 X_0 Pb-scintillator sampling calorimeter, arranged in 24 layers of 0.3 mm thick scintillator strips and 0.28 mm thick Pb plates
- \bullet It is located behind the DCH at z=-132 cm and is 18 cm deep \rightarrow It has been moved back by 22 cm to leave more space for DCH electronics
- Inner and outer radii: $r_i = 31$ cm, $r_o = 75$ cm $\rightarrow r_i$ was chosen by 300 mrad at -110 cm (I would like to move in)
- The CALICE analog hadron calorimeter (steel-scintillator) served as guidance for the design which has taken data in test beam for the last 5 years (C. Adloff et al., JINST 5, P05007 (2010))

4

Backward EC Calorimeter Design

- On average only 1-2 particles are expected in the backward EC EMC, \rightarrow pixel design is not required, strips are fine \rightarrow less RO channels
- Dave Hitlin suggested to use spiral-shaped strips as in Mark II advantage \rightarrow all strips of a given type are the same If all fibers go from inner to outer edge, where they are read out \rightarrow there is a natural ambiguity resolution, region defined by intersection is smaller at small radii where occupancy is higher
- Thus, we use 3 different shapes of strips:

Left-handed spiral Right-handed spiral Sectors

Readout in the Analog Hadron Calorimeter

SiPM

Example of a scintillator layer for an analog hadron calorimeter

Backward EC Calorimeter Design

- \bullet In the 24 layers, the 3 strip shapes will alternate 8 times
- **There are 48 strips per layer yielding 1152 strips in total**
- \bullet The strip size varies from 4.1 cm at r_i to 9.8 cm at r_o
- The Molière radius $r_{M} \approx 3.8$ cm (r_{M} (Pb)=1.5 cm, r_{M} (scint)=6.0 cm)
- Optimal design is to assemble each layer completely \rightarrow this requires that the EMC EC needs to slide back on the beam pipe (assembly of two separate halves is possible \rightarrow impact: 10 spiral strips in each layer are cut into two separate segments \rightarrow 160 extra channels)
- Pb plates are produced in two half rings
- The scintillator strips are read out with WLS fibers (Y11) coupled to an MPPC
	- A groove is milled in the center of the strip housing the Y11 fiber

Position Determination from Spiral Planes

E The left-handed logarithmic spirals are defined by

 $\sum_{r=1}^{n}$ **Exp[b** $*$ **t]** $\sum_{r=1}^{n}$ $\sum_{r=1}^{n}$ $\sum_{r=1}^{n}$ **y(t)** = **r Exp[b * t] Sin[t]**

For r=ro/2=37.5 cm, b=0.2 get 8 complete "tiles" and 2 fractions of a tile

The overlay of left-handed and right-handed spirals project out a tile structure, \rightarrow in radial direction we get 5 tiles $\rightarrow \Delta r \sim 10$ cm for 4 tiles $& \Delta r$ 4 cm for outermost tile

 In the worst case the resolution is $\sigma_r \sim \sigma_o \sim 2.9$ cm (outer region)

In the best case the resolution is $\sigma_{0} \sim 1.2$ cm (inner region)

This can be improved at the cost of more channels

Position Determination from all 3 Planes

- Adding sector strips improves σ_{φ} by factor of 2 around sector boundaries
- **For separating two tracks** only σ_{φ} is relevant
- Since sector strips can be cut out from a smaller rectangular sheet than spiral strips, save scintillator material

Scintillator Strip Readout

- Originally, we wanted to use larger sheets separating strips by slots leaving 1-2% connections between strips \rightarrow cross talk position depend.
- **E** The 3 mm thick scintillator strips are cut individually
	- best would be a spiral mould (usable for both left-handed and right-handed spirals), probably too expensive
	- **•** need sufficiently big plates to cut out 12 spiral strips
	- \bullet for radial strips, 75 cm \times 75 cm plates are sufficient
- Presently, St Gobain BC 404 scintillator is our choice (due to TOF use)
- At the inner edge the strips are 3.8 cm wide, increasing to 9.8 cm at the outer edge
- The sides are painted with a white diffuse reflector
- Front and back faces are covered with reflectors sheets (3M, Tyvec)
- To restore uniformity, implement a pattern of black dots onto to the reflector sheets

Properties of BC Scintillators

- We purchased 25 plates $(75 \text{ cm} \times 75 \text{ cm})$ of cast scintillator from St Gobain (Bicron) BC-404, since it is faster (TOF application) for the prototype
- BC-408 would be better matched to the Y11 fiber

Scintillator Strip Readout

- In the center a 1mm deep spiral-shaped groove is milled into which the 1 mm thick Y11 WLS fiber is inserted
- A SiPM (MPPC) is mounted at the outer edge into a precisely cut small groove
- A mirror is positioned at the inner edge of the fiber into a small groove
- **Use 2 mm thick coax cables to couple** the MPPCs to the ASIC

- We insert a clear fiber into each strip at the outer ring transporting light from a UV LED providing gain calibration and monitoring
- Each cell (strip+Y11 fiber+MPPC) will be tested before insertion into the detector with a ¹⁰⁶Ru or ⁹⁰Sr source

Mounting MPPCs to Y11 Fiber

Procedure to Hold Strips

E In order to hold strips we cut spiral or radial grooves into the lead segments

lead plate

- Grooves are 1.5 mm deep and 1 mm wide
- A 3 mm thick, 1 mm wide and 55 cm long plastic strip is inserted into the groove and is glued
- This structure is strong enough to hold the scintillator strips in place
- ϵ This has the advantage that the calorimeter can be rotated by 90⁰ to use cosmic muons for **MIP calibration**

Properties of SiPMs & MPPCs

- Multipixel Geiger Mode APD
	- Gain 106
	- Bias U~50 V
	- **Active area 1 mm²**
	- \bullet 1156 pixels, 20 μ m \times 20 μ m
	- **Efficiency 10-15%**
	- **C** Insensitive to B field
	- Each pixel has few $M\Omega$ quenching resistor
	- Recovery time < 100 ns
- SiPM detectors are autocalibrating
- SiPM response is non linear
- Dynamic range is limited by #pixels
- We have chosen Hamamatsu MPPCs with 1600 pixels and a gain of few 10⁵

Properties of New MPPC's

- Hamamatsu has produced two new photo sensors with 2500 pixels \bullet and 4489 pixels
- **These have larger dymanic range but smaller gain**

SiPM Response Function

- The SiPM response is non-linear and needs to be measured for each detector
- The shapes are very similar and agree within 15%
- A monitoring system may be necessary to measure the SiPM response function when required

10000 SiPMs in the analog hadron calorimeter

Measured Light Yield of MIP

- We have measured the light yield of the tile fiber-SiPM configuration for the cells installed in the AHCAL prototype plus spares
- The MIP is at 16.6 pixels the spread is 3.6 pixels \rightarrow this gives a dynamic range of 70 MIPs per cell
- **For the backward EC we** aim for a MIP of ~10 pixels

- ! this gives a dynamic range of 160 MIPs/cell for Hamamatsu MPPCs
- \rightarrow if necessary we could reduce pixel size to 20 μ m or 15 μ m increasing the dynamic range to 250 MIPs/cell or 450 MIPs/cell

Some Properties of MPPCs

- Breakdown voltage for 1x1 mm² \bullet MPPCs is ~70V
- Capacitance of 1x1 mm2 MPPCs is ~ 22-26 pF
- **C** Temperature and voltage dependence for 1x1 mm2 MPPCs is \sim 4.5%/0.1V and -2.2%/°C

Use stable power supplies, need to monitor temperature and gain

SPIROC Chip

- SPIROC: dedicated very front-end electronics for an ILC prototype hadronic calorimeter w SiPM readout
- \bullet Designed to provide
	- **large dynamic range**
	- **O** low noise
	- low consumption
	- **•** high precision
	- \bullet large # RO channels

- SPIROC is an auto-triggered, bi-gain, 36-channel ASIC SPIROC is an auto-triggered, bi-gain, 36-channel ASIC \rightarrow allows to measure the charge Q from one p.e to 2000 p.e. (on each channel) \rightarrow allows to measure the time t with a 100ps accurate TDC
- Analogue memory array (depth of 16 for each) stores t and Q measurements
- 12-bit Wilkinson ADC is embedded to digitize analogue memory contents (t & 12-bit Wilkinson ADC is embedded to digitize analogue memory contents (t & e Q on 2 gains) \rightarrow data are stored in a 4kB RAM
- High-level state machine is integrated to manage all these tasks e. automatically and control the data transfer to the DAQ

SPIROC gives Gaussian signals with no tails, shows excellent \bullet linearity and low noise

ASIC Board Arrangement

- **32 ASIC readout** boards are fixed in 2 layers behind the calorimeter (first layer with 20 boards, second layer with 12 boards)
- 36 MPPCs connect to one board with a ribbon cable
- **C** They are designed for ILC at $L=10^{34}$ cm⁻²s⁻¹ (radiation hard for

1036cm-2s-1?) First layer with 20 boards

SPIROC Setup in Bergen

chip has 36 input

SPIROC Setup in Bergen

SPIROC runs under Labview

C The ASIC board is connected to a PC with a USB cable

SPIROC is optimized for gain of 106, it works with MPPC (Gain few 105)

Calibration-Monitoring System

- Monitor stability of strip-fiber-MPPC system between MIP calibrations with fixed LED intensities
- Perform gain calibration
- Measure SiPM response function e
- Determine intercalibration constants e
- **E** Temperature and voltage dependence of SiPM
	- \bullet dG/dT ~ -1.7% / K
	- \bullet dG/dV ~ 2.5% / 0.1V
- \bullet Temperature and voltage dependence of light yield at fixed light intensity
	- \bullet dQ/dT ~ -4.5% / K
	- \bullet dQ/dV ~ 7% / 0.1V

→ stability of LED system after PIN diode correction <1%

Calibration-Monitoring System

- Use system similar to that of AHCAL
- Provide UV light to each tile via clear fiber
- Monitor each LED with PIN diode e
- Record temperature & voltage with slow control system

Calibration and Monitoring

- \bullet Use calibration and monitoring board of the AHCAL prototype
- It has 12 LEDs that could be coupled to 19 clear fibers
- Since we have 144 channels just need 12+1 per LED
- Advantage: Use spare board

Disadvantage: Need to deal with 158 clear fibers

Layout of Calibration Boards

- Since the CMB boards are too big need to re-layout the boards, but the basic concept can be used
- **Place 6 LEDs on one board, each LED feed 13** clear fibers
- Place 8 boards in a ring around the EC
- With two rings get 1152 channels
- Left LED supplies 12 right channels via fibers, while right LED supplies 12 left channels
	- There are 2×48 LED's and 96 PIN diodes

Cables Tray

- ϵ Each SPIROC board has \rightarrow 36*6 cables **O** one multiplexed output (USB) to DAQ
	- a low voltage input for +5.5 V and -7.5V
	- a high voltage input 70V
	- **an electronic calibration input**
	- **an analog output**
- ϵ Each calibration board has \rightarrow 16*8 cables **O** low voltage for LED 7V
	- **O** operating voltage
	- **6 PIN diode output**
- \bullet 4 thermocouples per layer \rightarrow 24*4 cables

Total number of cables $108+128+96=332$ cables \rightarrow area: ~100*0.3 cm²

HV Coupling for the SiPM in the AHCAL

- In the AHCAL the HV for the SiPM is supplied through the ASIC
- This feature was e implemented into the SPIROC chip
- \bullet With DAC individual HV $(\pm 5 V)$ can be supplied to each MPPC

Mechanical Support Structure

- The entire calorimeter just weighs about 1300 Kg
- An Al frame with a strong back will hold the EMC backward EC layers
- If the EC is built as a single unit, it needs to slide back on the beam pipe supported on the tunnel walls
- So it needs to be fixed at the tunnel and is rolled in e.
- Since the inner radius is 31 cm, there should be sufficient clearance for pumps and other beam elements \rightarrow need detailed drawing
- I need to talk to Dominique Bretone

Mechanical Support Structure

- It is possible to built the EMC backward EC in two halves (vertical $split)$, \rightarrow impact:
	- **10 strips per layer will be cut into two segments**
		- \rightarrow the inner segments need to be read out at the inner radius
	- **Increase number of channels by 240** > need 240 additional MPPCs ! need 7 additional SPIROC boards (arrange in a second plane) → need 20 additional LEDs (4 boards) → need to feed fiber in at inner edge (routing is not trivial here)
	- \bullet Need extra thermocouples (2 per layer \rightarrow 48)
- Though this is possible the performance will deteriorate near the e. boundary (need study to determine by how much)
- There will be 122 additional cables, increase by 37%
- This add extra costs
Attenuation Length of Y11 Fiber

- **E** In the EMC backward EC the Y11 fibers have a length of l=55.39 cm
- This is longer than in other e. calorimeter prototypes
- Minos measured the attenuation e length of a 1.2 mm thick Y11 fiber to be of > 7 m

Performance of Scintillator Strip ECAL

Performance of AHCAL to Electrons

Read out of 3×3 cm² tiles with Y11 fiber coupled to SiPM

● 38 layers of 20 mm steel and 5 mm scintillator

Expected n Flux

- **E** Take values from Eugeneo's values from Annecy talk
- **C** In layer 0 of backward IFR EC, worst rate is 3500 Hz/cm2 \rightarrow rate a z=-128 cm should be be lower
- In ten years (200 days running) estimate $6.1*10^{11}$ n/cm² or 6.1*109 n/mm2
- **This high flux is only in the inner** region (r=31-41 cm)
- The rate drops by significantly e towards outer edge
- If n 's come from IP, MPPC is e perpendicular to flight path

Radiation Damage Measurements

- **C** Dark current increases linearly with $flux \Phi$ as in other Si devices: $Δ I = α Φ Veff Gain,$ with α =6x10⁻¹⁷A/cmVeff ~ 0.004mm³ determined from observed ΔI looks a bit too high since it includes SiPM efficiency, but is not completely unreasonable
- \bullet Initial SiPM resolution of \sim 0.15 p.e. is much better than that in other Si detectors \rightarrow it suffers sooner: after Φ ~1010/cm2 individual p.e. signals are smeared out

 \bullet

However MIP signal are seen even after Φ ~1011/cm2

Neutron Irradiation of MPPCs

$*$ Prospective damage

Increasing lattice defect in silicon bulk

Flux

 3.1×10^8 neutron/cm² 3.1×10^9 neutron/cm² 3.1×10^{10} neutron/cm² 3.1×10^{11} neutron/cm²

From talk by T. Takeshita CALICE meeting Sep 17, 2009

Radiation test location The reactor YAYOI (Fast neutron source reactor of the University of Tokyo)

Gain and Leakage Current

- \bullet No significant changes on the gain due to neutron irradiation
- Huge increase in leakage current for neutron flux > 3x109/cm² \bullet

Hot Spot Pictures

Observe increased number of hot spots after irradiation of Observe increased number of hot spots after irradiation of $3x10⁹$ n/cm²

Saturation Curve

Observe no significant change on the saturation curve \bullet

Results look consistent with ITEP measurements \bullet

Main change after high n dose is increase in noise \bullet

Performance of 15 μ m MPPC after 10¹³ n/cm²

The new The new MPPCs have lower efficiency (more boundaries) and need have lower efficiency (more boundaries) and need higher bias voltage to compensate for loss

There is also a new SiPM from China (NDL) that looks good too e.

Performance of 15 μ m MPPC after 10¹³ n/cm²

- \triangleq 15 µm MPPCs still work fine after 10^{13} n/cm² irradiation
- \bullet Saturation curve is not effected
	- Response decreases by 40%

Performance of 15 μ m MPPC after 10¹³ n/cm²

 \bullet So if the 25 µm pixel MPPC show a problem we switch to $20 \mu m$ pixel or 15 μm pixel MPPCs \rightarrow here we have a safety margin of at least 20 in a small region of the inner edge

- S/N and equivalent noise charge \bullet after irradiation looks ok
- **According to Eugenio's study** backward endcap EMC will see $10⁹$ n/mm² after 10 years

Y. Musienko, A. Heering

Alternative Readout Solution

- One ongoing issue is the neuron flux in the detector
- The MPPC's can be operated in stable mode for n flux $\langle 3 \times 10^9 \text{ n/cm}^2 \rangle$
- If simulations confirm that the n flux is too high for stable MPPC operation, we could modify the calorimeter using smaller-size APDs or new pixelated PMs coupled to clear fibers gain
- 107 New PMs have 64 pixels Spectral response106 CATHODE RADIANT SENSITIVITY (mAW)
QUANTUM EFFICIENCY (%) 10 **CATHODE** RADIANT **ENSITIVIT SAIN** 105 **QUANTUM** EFFICIENCY 104 $0₁$ **CONSTRAINING CONSULTANT AND INCOME.** 103 0.01 ₂₀₀ 700 800 900 1000 1100 300 400 500 600 800 SUPPLY VOLTAGE (V) **WAVELENGTH (nm)**

Particle Identification: dE/dx

- \bullet Do dE/dx pattern recognition for hadrons \rightarrow for MIP-like particles energy losses are $(dE_{Pb}=4.3 \text{ MeV}, dE_{scint}=0.6 \text{ MeV})$
- A 0.5 GeV π is at the minimum while a 0.5 GeV K is below the minimum
- For MIPs, $\Delta E = 100$ MeV in 24 layers
- **For particles** below minimum dE/dx increases with depth $(1/\beta^2)$

 ! look at dE/dx pattern and combine it dE/dx information from SVT and DCH \rightarrow improve K/ π separation (3 σ) up to 0.6-0.7 GeV

Particle Identification: ToF

number

 ϵ ToF application \rightarrow 4 time constants Scintillator τ_{sc} =2.2 ns \bullet Y11 fiber τ_{fiber} =2.3 ns **O** MPPC rise time resolution σ_{MPPC} ~0.1 ns **O** transition time in fiber t_{fiber} =2 ns (56 cm)

C MPPC signal is trigger by arrival of first photon

● We have up to 24 measurements ъf

Need a measurement for spiral strip

With TOF measurements K/π separation (3 σ) may be improved to >1.2 GeV

Cost Estimate

Manpower Issues

- Cutting 1152 strips takes 1152 h (30 d), cutting grooves into Pb takes $96 h \rightarrow$ need efficient machine shop with computerized milling machine
- Preparing mechanical support structure takes 3-4 days
- Mounting 1152 cells (strip+y11 fiber +MppC) and testing them with 106Ru source takes about 2300 h (60 d)
- Stacking a layer (2 persons) takes about 8 h-> 192 h for EC (24 d)
- Connection to ASIC and DAQ -> 40h
- Miscellaneous tasks -> 5 d
- **Total assembly time 15 weeks**
- **Simulations studies 1 year**

Manpower Issues

- I will get a postdoc through AIDA (3 y) and a technical student (3y) who can work 50% on this fro middle of 2011
- It is also possible to attract master students
- If a German group gets involved and is interested in calorimetry I can get support from DESY
- I also applied for a grant to pay master students to help building the e i prototype
- The postdoc, the technical student and one of my master students will be involved with building and testing a backward EMC prototype

Prototype Design

Since the Molière radius is 3.8 cm, most particles hit one strip \rightarrow shower is contained in the 6 strip arrangement

- \bullet Use 75 cm \times 75 cm scintillator plates to cut out 6 strips/layer, left-handed spiral, right-handed spiral and radial sectors with circular boundaries for (24 layers) \rightarrow cut groove for fiber, MPPC and mirror
- \bullet Use 75 cm \times 75 cm Pb plates (24 layers) cut to the right ring-shaped geometry
- MPPC is read out from Y11 fiber at outer edge and mirror is placed at inner edge
- **E** Insert UV light via clear fiber at outer edge
- **e** Place temperature sensor near MPPC

In this setup, scintillator & PB plates may be reused for full detector

Status of Prototype Preparations

- \bullet We have the scintillator sheets (75 cm \times 75 cm \times 0.3 cm) in Bergen 25 BC 404 sheets from St Gobain
- The first radial strip is cut with the old machine
- **The 24 hardened Pb plates from JL Goslar** machined to the correctsegment shapes are at CERN

- We have 160 MPPCs in Bergen, 16 more than we need for the prototype
- We have our own PC with Labview which needs to be interfaced to the SPIROC chip and the CALICE CMB
- Gigi Cibinetto promised to send me 80 m of Kuraray Y11 fiber, once they finished cutting fibers for their prototype, but I have not heard back from him after the summer
- I have two SPIROC boards in Bergen (need another 2)
- I will get 1 calibration board from Prague with 12 LEDs & clear fibers

Prototype Preparations Continued

- Ludovic Raux and Stephane Callier from LAL came to Bergen for a day first week of April to set up SPIROC chips readout in Bergen \rightarrow we have SPIROC I (no digitization) and SPIROC II with digitization
- An electronics engineer from Prague will come to Bergen in the spring to set up the calibration board
- All the major components have been purchased except high precision power supplies (I spent 25K\$ of personal money I inherited on the prototype plus another 10k\$ from the instrumentation budget)
- I need to order temperature sensors and diffuse reflectors (different reflectors were tested but I have not seen results)
- Yesterday, Gigi told me that he has 50 m Y11 fiber he will send me
- 2 weeks ago, I applied for a University grant (35k\$) to buy power supplies, hire a student for stacking prototype and travel for testbeam

First Strip

- **First radial strip milled with** old machine
- **The groove for the MPPC** is visible

Status of Prototype Preparations

- The machine shop in Bergen has a computer-controlled milling machine
- **C** Dominik Fehlker, our electronics engineer has programmed 48 left-handed spirals and 48 right-handed spirals in Pro Engineer
- **C** Dominik is transferring one spiral from Pro Engineer to the milling machine

PrototypeMechanical Support Structure

R&D in Bergen

We have built a black box, and made fixtures for tile measurements

R&D in Bergen

- We have a VME system to read out detectors
- We bought a 14 bit ADC from Caen
- We have set up LabView
- I have an engineer and had one master student

R&D in Bergen

- \bullet We have started to measure properties of SiPMs, MPPCs and MAPDs in our laboratory
- \bullet We have started to measure LEI Black Box and source spectra from scintillator tiles

Dark Rate

Dark rate increases with bias \bullet voltage, for 1x1 mm2 detectors the slope is much flatter than that for 3x3 mm2 detectors

Dark rate drops with increasing e threshold, typically cut at 0.5 MIPs for data taking, no cut for gain calibration

Noise Studies of Setup

For recommended operating voltage noise of 1x1 mm2 MPPC is 4 ADC bins

Cross & Homogeneity Talk Measurements

- Read out 2 tapered strips simultaneously Read out 2 tapered strips simultaneously that are separated by cuts
- Shine LED light via a clear fiber on 12 fixed positions located on both sides of Y11 fiber
- \bullet Define cross talk fraction as ratio of MIP peaks of far tile to that of near tile
- \approx Start with ~50% cuts (bridges) and measure cross talk, average several measurements
- **Remove bridges down to 2% in steps** to establish a relation of cross talk vs size of bridges \rightarrow consider points: 50%, 25%, 10%, 5%, 2%

Setup for Cross Talk Measurements

- Using 2 independent readout chains simplifies measurement considerably
- \rightarrow Reduces systematics
- **Before each** set of 12 measurements MPPCs are recalibrated

Setup for Cross Talk Measurements

Use UV LED

Fiber is held by Al fixture

Since we have only 1 preamp we presently use the same MPPC for both strips \rightarrow introduces

 systematics fiber-MPPC matching

C Try to get another preamp

Setup for Cross Talk Measurements

- 2 connected scintillator strips
- **Bridges are clearly visible**
- Strips are covered with Tyvec sheets edges are wrapped withTeflon

Cross Talk Measurements

- **The 2 tiles are connected** by bridges that cover 50% of the total length
- Total length is 12 inch (Eljen e scintillator)
- We shine light from an LED via a clear fiber onto tile at the outer broad side
- We measure with the same detector first light from tile that is illuminated and then neighbor tile
- We have repeated these \bullet measurements a few times → systematic effect, groove for

MPPC is too large to reproduce optimal MPPC-fiber matching

- Use pulse heights in reference MPPC to look at homogeneity
- Due to tapered shape would expect non homogeneity > higher light yield near large face (MPPC side)
- \bullet We need to study this with strip dimensions used in prototype
- We need to look at homogeneity of spiral strips
- **C** Develop method to produce homogeneous light output

- Use pulse heights in reference MPPC to look at homogeneity
- \bullet Due to tapered shape would expect non homogeneity ! higher light yield near MPPC side (larger face)
- \bullet With a reflector between strips light yield increases
- Light yield increases from ~40 at opposite side to 50 at MPPC side
- Develop method to produce homogeneous light output
- We need to look at homogeneity of spiral strips

- Look at light yield of the strip that is not directly illuminated
- **Compare performance with** Tyvec reflector between strips and without
- With reflector we see a small amount of Xtalk (O(2%)) as expected
- **■** Xtalk is slightly higher for near side wrt far side
- **Cross talk is independent** of light production point

- Measurements in reference MPPC on far side and near side at both ends of strip
- Expect uniform distribution for each set of points, also for far and near side
- **Fluctuations show** systematic effects in reproducibility

- Measurement of the neighbor MPPC
- **Light yield shows only** small position dependence
- Drop from 25% to 5% is less than expected
- Student forgot to add reflector in the gaps
- I ask him to repeat 2% points with Tyvec in gaps and with a source

Cross Talk Measurements

- Plot cross talk for 10 measurements at 10 points
- **For light far from neighbor we** get results consistent with 50% expectation
- **For light close to neighbor we** get results consistent that are ~ 70% which are much higher than the \overline{L} expectation

2

 \bullet

So maybe the bridges should be at the top and bottom

Setup for New Cross Talk Measurements

- We will repeat Xtalk measurements with full-size strips
- We got two full-size sector strips from machine shop
- Strips will be covered with Tyvec on top and Bottom and with Teflon on sides
- Start with 50% connections
- Gaps will be covered with Tyvec
- **•** Place top plate with 12 holes in fixed position so the fiber is always inserted on the same positions

Conclusion

- **The backward EC EMC is an important component for achieving a** hermetic detector for rare decay analyses and for measuring (machine) backgrounds
- We have an affordable design providing reasonable energy resolution
- The spiral strip arrangement elegant for achieving good position info (particularly in φ), while minimizing the # readout channels
- The detector can be built in one piece or two halfes
- The detector can be used for particle identification, TOF, dE/dx
- \bullet If n flux is 3500 Hz/cm² in worst case, this should provide no problem for MPPC operation, \rightarrow have a safety margin of at least 20 and can switch from 25 µm pixels to 20 (15) µm pixels
- It would be useful to have collaborators to increase manpower, funding

Next Steps

- \bullet The near-term goal is to build a 144 cell prototype with the full length
- Major components are in Bergen, get 50 m Y11 fiber from Gigi \bullet
- I am pushing our machine shop to get the remaining 143 strips \bullet produced
- \bullet Calibrate finished strips with $106Ru$ source
- \bullet Aim for late spring/ early summer to calibrate it with cosmic muons
- Then move to test beam at DESY or CERN and Frascati to measure e electrons and photons

Studies of MPPC Properties

- We have a setup with a microscope and a precision x-y table that e. allows us to shine LED light on individual pixels
- \bullet We will study efficiencies, inter-pixel inter-pixel cross talk cross talk

Setup for Cross Talk Measurements

- **€** 2 connected scintiilator strips
- **Bridges are** clearly visible
- Strips are covered with Tyvec sheets edges are wrapped with Teflon

First Tests of 3mm Thick Tiles

- \bullet Test 3mm thick 3 cm \times 3 cm tiles using Sr source
- **Tiles are wrapped with 2 layers of Teflon tape, (reflector not** $optimal)$ \rightarrow AHCAL uses 3M super reflector
- Attach MPPC on one side of tile on fiber or directly on tile Attach MPPC on one side of tile on fiber or directly on tile
- Place source in the center of the tile Place source in the center of the tile
- **Trigger with second scintillator read out with PMT**
- **For SuperB readout via WLS fiber has advantages**

MPPC Readout of 3mm Thick Tiles

- Use ⁹⁰Sr source to measure MIP position in $3 \text{ cm} \times 3 \text{ cm}$ tiles read out with Y11 fiber and MPPC
- Trigger on scintillator below tile read out with PM
- MIP peak is $~6$ pixels for direct readout
- MIP peak is \sim 11 pixels for fiber RO
- **Extrapolation from 5 mm tile** e yields 8-9 pixels

MPPC Signals

- We have detectors from 4 different manufacturers, tests were done on MPPCs (1x1 mm2,3x3 mm2), SiPMs , MAPDs,
- The 1x1 mm² MPPC has a faster response than the 3x3mm² MPPC (2 ns vs 2.7 ns)

Measured Properties of 10000 SiPMs

In CALICE, we have measured various properties of SiPMs on the \bullet bench, such as the crosstalk among pixels, dark current and noise

 The arrows indicate our cut-off \bullet

