Backward EMC in FullSim and Use as a TOF Device

Chih-hsiang Cheng
Caltech
2010/12/13-17
SuperB General Meeting, Caltech

Geometry

- Twenty-four layers of Pb and plastic scintillator.
- Inner/outer radii: 310 mm / 750 mm
- Center z-coordinator: -1390 mm
- Thickness: Pb: 2.8 mm, Scintillator: 3.0 mm

- Pb side faces the IP. [probably will change to scintillator, and add one more scintillator layer at the outer most layer]
- No supporting structure.
- No segmentation in individual layer geometry description.
- GDML file: EMC_backward_PbScint.gdml, committed to Bruno. [Oct. 16, 2009]

Visualization

Segmentation

- There is no segmentation in θ . We use θ index (used in barrel and forward endcap to index rings) to index layers, continuing the index for barrel (which ends at -48).
- φ segmentation is done logically. Each layer has 48 sectors. There are three types of segmentation:
 - ▶ left-handed spiral (3n+1)
 - ► right-handed spiral (3n+2)
 - straight sectors (3n+3)

Lower bound of
$$\phi$$
 for sector j at r.

$$\phi_{\text{left}} = -A \cdot \log(r/r_{\text{max}}) + (j-1)\Delta\phi$$

$$\phi_{\text{right}} = +A \cdot \log(r/r_{\text{max}}) + (j-1)\Delta\phi$$

$$\phi_{\text{straight}} = (j-1)\Delta\phi$$

$$\Delta \phi = 2\pi/48$$
 $r_{\text{max}} = 750 \text{mm}$ $A = 34 \Delta \phi / \log(r_{\text{max}})$

Segmentation

Test with single gammas

• Shoot single gammas toward the backward EMC along the z-axis. Starting position is right in front of the EMC (z=-132cm), and random in x-y plane within a square.

 Generate 0.1, 0.2, 0.5, 1.0, 2.0 GeV photons, 1000 photons in each job. Record all energy deposited in the scintillator.

Energy resolution

Compare with what we put in the fast sim:
$$\frac{\sigma_E}{E} = \frac{14\%}{\sqrt{E(\text{GeV})}} \oplus 1\%$$

Energy by layer

• Average energy deposition in each layer per event.

Timing device at or in front of EMC

- Test K/ π separation using fastsim:
 - ▶ store track timing at the first layer of EMC fastsim model at sim-track level (i.e., true time)
 - smear timing with a Gaussian at given resolution.
 - use reconstructed path length to calculate velocity (measured length/ smeared time).

K/π separation in forward and backward

FORWARD

K/π separation in forward and backward

• Backward EMC can provide >3 σ K/ π separation around 1 GeV with timing resolution of 100 ps. (EMC front face at z ~ -132cm)