SuperB prospective of time-dependent analysis of $B^0 \rightarrow K_S K_S K_S$ decays

Eli Ben-Haim, Simon Sitt

14/12/2010

Simon Sitt, LPNHE Paris

1

Overview

- Motivation
- Current experimental status
- Feasibility study at SuperB
 - Vertex precision
 - Beam backgrounds
- Error projection

Physics motivations

• CP definite final state allows to measure S and C inclusively

Prediction: "tree pollution" and final state rescattering (pQCD)

Simon Sitt, LPNHE Paris

14/12/2010

Currents status

Comment: Preliminary results are shown, publication underway

14/12/2010

Simon Sitt, LPNHE Paris

4

Feasibility study using FastSim

- Release V0.2.5
- Reconstruct K_s using KsDefault list (charged pion daughters only)
- TreeFitter for vertexing

Beam backgrounds

Number of generated particles in event

No background

Number of reconstructed KS per event with and without SuperB-like backgrounds

Strongly geometrically constrained reconstruction insensitive to beam backgrounds

Efficiencies and vertex resolution

- The boost in SuperB is approximately half the boost of BaBar $(\beta\gamma=0.24 \text{ vs } \beta\gamma=0.56)$
- We use FastSim for the following investigations:
 - We investigate how this reduced boost and additional detector components improve the reconstruction efficiency
 - To do time-dependent analysis with a reduced boost we need an improved vertex resolution. We check if the proposed Layer0 of the SVT provides a sufficient improvement

Efficiencies for different detector compositions

no background	BABAR backgrounds	SuperB backgrounds
0.188 ± 0.001	0.186 ± 0.001	0.187 ± 0.001
0.213 ± 0.002	0.216 ± 0.002	0.218 ± 0.002
0.219 ± 0.002	0.216 ± 0.002	0.220 ± 0.002
0.217 ± 0.002	0.219 ± 0.002	0.218 ± 0.002
0.214 ± 0.002	0.217 ± 0.002	0.216 ± 0.002
0.212 ± 0.002	0.217 ± 0.002	0.216 ± 0.002
	no background 0.188 ± 0.001 0.213 ± 0.002 0.219 ± 0.002 0.217 ± 0.002 0.214 ± 0.002 0.212 ± 0.002	no backgroundBABAR backgrounds 0.188 ± 0.001 0.186 ± 0.001 0.213 ± 0.002 0.216 ± 0.002 0.219 ± 0.002 0.216 ± 0.002 0.217 ± 0.002 0.219 ± 0.002 0.214 ± 0.002 0.217 ± 0.002 0.212 ± 0.002 0.217 ± 0.002

The reconstruction efficiency increases by 13% wrt BaBar (one third due to reduced boost). Detector components additional to the baseline concept do not significantly improve the efficiency.

	DG	SVT	DCH	PID	EMC	IFR
	BABAR	"BABAR"	"BABAR"	"BABAR"	"BABAR"	"BABAR"
Reminder	DG0	5 layers+L0	"BABAR"	DIRC	"BABAR"+fwdLYSO	baseline
	DG1	5 layers+L0	"BABAR"+bwdDCH+fwdDCH	DIRC	"BABAR"+fwdLYSO	baseline
Detector Geometries	DG2	5 layers+L0	"BABAR"+bwdDCH	DIRC+fwdPID	"BABAR"+fwdLYSO	baseline
	DG3	5 layers+L0	"BABAR"+fwdDCH	DIRC	"BABAR"+fwdLYSO+bwdEMC	baseline
	DG4	5 layers+L0	"BABAR"	DIRC+fwdPID	"BABAR"+fwdLYSO+bwdEMC	baseline

14/12/2010

Vertex resolution

Particularity: no charged track from signal B decay

It was already shown that TD-analysis with direct charged tracks on the signal side is possible.

Here: look at the position resolution on the signal side only

$$\delta z = z_{gen} - z_{rec}$$

Vertex resolution in z improves by a factor of ${\sim}2$ wrt BaBar ${\rightarrow}$ sufficient for time-dependent measurement

Error projection (1/2)

- Right now the **statistical error dominates** the total uncertainty. With increased statistics (~20 x BaBar), the **systematic uncertainty will dominate**.
- We use toy studies to estimate **how the total error can be reduced** at luminosities expected at SuperB
- The most **straight-forward way** to reduce systematic uncertainties is to **free parameters** that have been fitted on simulation or are taken from other measurements (This increases the statistical error).
- Systematics from backgrounds from B decays can be reduced by better knowledge of their BF and CP content (we assume 10%-measurements for the exclusive contributions in the future). For sizable contributions (in particular the generic component) the S and C parameters can be allowed to vary in the fit.

Error projection (2/2)

Summary

- The time-dependent measurement is feasible and can be competitive with the current sin(2β) measurements using B⁰→cc̄K^(*) events after 10 years of running
- The reconstruction efficiency increases by ~13% wrt to BaBar
- Beam backgrounds are not an issue for $B^0 \rightarrow K_s K_s K_s$