SuperB sensitivity to $\delta_{K\pi}$

- Mixing is a transition from a particle to its antiparticle. It occurs when the flavour eigenstates (D^0, \overline{D}^0) produced in decays are not the same as the mass eigenstates (D_1, D_2) which move through space.
- We parametrise mixing by the normalised mass and width differences of the mass eigenstates:

$$egin{array}{lll} \Delta M &=& m_1 - m_2 \ \Delta \Gamma &=& \Gamma_1 - \Gamma_2 \ \Gamma &=& (\Gamma_1 + \Gamma_2)/2 \ x &=& \Delta M/\Gamma \ y &=& \Delta \Gamma/2\Gamma. \end{array}$$

• Mixing is strongly suppressed in charmed mesons; the Standard Model predicts a very tiny $(x, y < 10^{-4})$ effect from calculable short-distance effects.

Long-distance

Measurements

- Many different mixing measurements. Concentrate on three channels:
 - $-D^0 \to KK, \pi\pi, K\pi$. Allows the measurement of y_{CP} , equal to y if CP is conserved.
 - $-D^0 \to K\pi$. Because of the unknown strong phase $\delta_{K\pi}$ between direct and mixed decays, this channel gives us rotated quantities

$$x' = x \cos \delta_{K\pi} - y \sin \delta_{K\pi}$$

 $y' = y \cos \delta_{K\pi} + x \sin \delta_{K\pi}$.

- $-D^0 \to K_S \pi \pi$. This analysis requires an amplitude model for the Dalitz plot, but because $K_S^0 \rho$ is a CP eigenstate (and therefore has known strong phase) we can measure the phase at every point relative to this intermediate state, and extract x and y directly.
- By running at charm threshold, we can produce coherent $D^0\overline{D^0}$ pairs, and measure $\delta_{K\pi}$, which allows us to extract x and y from the $K\pi$ channel.
- BaBar results (and one CLEO):

$$egin{aligned} \mathbf{y}_{CP} &= (1.03 \pm 0.33 \pm 0.19)\% & \cos \delta_{K\pi} &= 1.1 \pm 0.35 \pm 0.07 \ x_{K\pi}^{'2} &= (-0.022 \pm 0.030 \pm 0.021)\% & y_{K\pi}' &= (0.97 \pm 0.44 \pm 0.31)\% \ x_{K_S^0 hh}^{0} &= (0.16 \pm 0.23 \pm 0.12 \pm 0.08)\% & y_{K_S^0 hh}^{0} &= (0.57 \pm 0.20 \pm 0.13 \pm 0.07)\% \end{aligned}$$

Contours in (x, y) space

Combining the results

- 'CKM-like' fitter uses χ^2 of all results to arrive at best contour.
- For hypothetical SuperB contour, assume that all errors scale $\stackrel{\times}{>}$ as $1/\sqrt{N}$ and that SuperB has 100 times the data of BABAR.
- Take fit to BABAR results as central value, and perturb individual measurements around this by their hypothetical errors.

Sensitivity to $\delta_{K\pi}$

- Suppose we run SuperB at charm threshold long enough to improve the CLEO $\cos \delta_{K\pi}$ measurement by a factor 10.
- This has practically no effect on mixing sensitivity.

Input	$x~[imes 10^3]$	$y \ [imes 10^3]$	$\cos \delta_{K\pi}$
BaBar	1.68 ± 2.67	6.94 ± 2.06	0.83 ± 0.73
BaBar+CLEO	1.67 ± 2.67	6.85 ± 1.63	1.00 ± 0.43
Plain SuperB	1.39 ± 0.26	7.00 ± 0.14	0.98 ± 0.10
Threshold $\cos \delta = 1.0$	1.40 ± 0.27	7.00 ± 0.15	0.99 ± 0.02
Threshold $\cos \delta = 0.5$	2.29 ± 0.23	7.48 ± 0.18	0.62 ± 0.03
Threshold $\cos \delta = 0.0$	$ -1.58\pm0.26 $	0.80 ± 0.20	0.41 ± 0.03

- \bullet $\delta_{K\pi}$ measurement may still be of interest for its own sake.
- $D^0 \to K_S \pi \pi$ with SuperB statistics already has strong sensitivity to $\delta_{K\pi}$ by fixing what sector of the (x,y) space you occupy.

Visualisation

- Adding a $\cos \delta$ result enormously 6.5 reduces the purple $K\pi$ annulus. \times 6
- But with almost no effect on the mixing contour!

Conclusions and caveats

- SuperB can have good sensitivity to $\delta_{K\pi}$ (\sim factor 3 better than CLEO) from $D^0 \to K^0_S hh$, without a charm threshold run.
- Mixing is not the best argument for a threshold run.
- ullet Point to note: $D^0 o K\pi$ analysis is simpler than $D^0 o K^0_S hh$ no amplitude analysis required.
- The study assumed that systematic errors would scale along with statistical ones. If error from amplitude model of $D^0 \to K^0_S hh$ analysis is not reducible, sensitivity will degrade.