

hiGh-efficient beAm defLector fOR accElerators

Proponente: M. Romagnoni (romagnoni@fe.infn.it) Sezioni Partecipanti: Ferrara, Legnaro

Discussione Bando Giovani Ricercatori CSN5, Frascati, 01/12/2021

PI (ME)

- Education:
 - Bachelor degree thesis: "Molding of silicon plates with controlled curvatures"
 - Master degree thesis: "New schemes for crystal-assisted halo collimation and extraction in the Large Hadron Collider"
 - PhD degree Thesis: "Fabrication of bent crystal for study of orientational effects in high energy physics"
- Production of bent crystal for channeling to:
 - Axial, Chanel (INFN Projects)
 - UA9, HL-LHC upgrade (CERN)
 - PEARL, N-Light (H2020 MSCA RISE Projects)
 - Crysbeam, SELDOM (ERC projects)
- Silicon machining and/or crystal characterization for:
 - LOGOS, OSCAR, ELIOT, STORM, Sherpa, BULLKID (INFN Projects)
 - NU-CLEUS (ERC Project)
- 23 papers published using results from crystal samples I directly contributed to design, produce and characterize on beam

Why bent crystals in particle accelerators?

Large Hadron Collider (Fr/Sw):

- circumference 27km
- Dipole max field 8.3 T

Advanced Photon Source (USA):

- circumference 1.1 km
 - crystal equivalent dipole 216 T

GALORE: overcome the limit!

Novel design for bent crystal based on silicon micromachining

Remove upper efficiency limit: close to 100% efficiency possible

How does it work? Amophous vs crystals

Amorphous materials: random scattering with single atoms

Crystals: Ordered structure from specific points of view: particles interacts with structures of atoms such as planes and/or axis

How does it work? Planar channeling

Strong static potential (≈**GeV/cm**) can trap (*channel*) positive particles between two adjacent atomic planes angle

Channeled particles are forced to follow crystal curvature, with steering power ≈ **10²T** magnetic dipole

Bent crystal channeling applications

Absorber

Beam Collimation: With crystal high control of beam halo separation from primary beam Novel radiation sources: For channeled light particles (e+/e-) enhanced photon emission

Bent crystal

Beam Extraction:

Surgical redirection of a beam portion, towards a precise location in the machine or in an external facility

Spin precession:

Spin precession much faster in bent crystal wrt existing dipoles \rightarrow EDM & MDM study of fast decaying particles

Channeling limit

- Scattering with nuclei **quickly remove** particles from channeling
- Rate of nuclear dechanneling is strongly dependent on **impact parameter** on the interplanar channel
- The fraction of the beam impacting close to atomic planes is **not deflected**: hard-limit for channeling efficiency set at ≈80%

GALORE challenge: lens-assisted crystal

- At the very beginning of channeling, most particles trajectories point towards the center of the interplanar channel
- **Before** nuclear dechanneling can occur, the crystal is **interrupted**
- The particles continue to travel in straight line, being «focused» at the center of the channel
- Once the crystal interruption ends, particles re-enter the crystal far from nuclei in zone of stable channeling

GALORE challenge: lens-assisted crystal

The phenomena is **fully understood theoretically**

https://doi.org/10.1088/1748-0221/2/08/P08006

BUT

Still **no prototype** has been produced and no experimental test has been performed

GALORE goals

- ✓ To develop a reliable procedure to fabricate this type of bent crystals
- To manufacture and characterize a first prototype
- ✓ To **test** a first prototype with 180 GeV/c hadronic beam

Success of GALORE would prove the feasibility of this new design and unlock application for wide energy range

Schematic of GALORE prototype

State of the art

- Crystal sample maximum level of perfection:
 - Dislocation density >1/cm²
 - Miscut <2 µrad (≈2 order magnitude reduction wrt standard)
- High standard for crystal quality stability and bending precision and stability within few microradian must be met for operation in LHC

Nominal «perfection» for crystal manufacturing has been reached!

"INFN KE4350/EN/HL-LHC" between INFN and CERN was signed: 4 *crystals collimators* have been already provided to CERN **by INFN Ferrara**

New techniques from semiconductors industry

Deep Reactive Ion Etching (DRIE)

- High spatial precision
- Vertical walls with high aspect ratio
- No damage / stress on crystal

Silicon Nitride (Si₃N₄) film

- High adhesion to silicon
- Nanometric precision of film thickness
- Highly patternable with submicrometric precision

Methodology: GALORE & silicon micromachining

- Bending achieved by deposition of Si₃N₄ tensile film
- Si₃N₄ pattern leave flat area for channeling lens to help atomic planes alignment
- The channeling lens is obtained with DRIE by fabrication of micrometric trench

Timeline

Task	Days	Progress		
Supply of prime material	90			
Wafer characterization at INFN-Ferrara	30			
Wafer characterization at ESRF	15			
Coating with tensile films & stress characterization	60			
Shaping of the crystals to final sizes	15			
R&D DRIE setup and characterization	135			
Coating with tensile films & stress characterization	60			
Shaping of the crystals to final sizes	15			
Micro-lens fabrication and characterization	135			
Beam Test at CERN	15			
Writing of papers and dissemination of the results	150			

External facilities

INFN Laboratories

BUDGET

	Year 1	Year 2
Crystal Material + validation	9 k€	4 k€
Laboratory consumable	11 k€	11 k€
Film desposition	3 k€	3 k€
Sample dicing and lapping	7.5 k€	5.5 k€
Micrometric trench fabrication	20 k€	12 k€
Machine Upgrades	21 k€	23 k€
Beam Test		10 k€
Total	71.5 k€	68.5 k€

Research Team

Name	Unit	FTE	Expertise	
Marco Romagnoni (PI)	INFN Ferrara	1	Bent crystal production & characterization	
Andrea Mazzolari	INFN Ferrara	0.2	Bent crystal production & characterization	
Laura Bandiera	INFN Ferrara	0.2	Channeling and data analysis expert	
Vincenzo Guidi	INFN Ferrara	0.1	Crystal design	
Mattia Soldani	INFN Ferrara	0.2	Testbeam & data analysis expert	
Melissa Tamisari	INFN Ferrara	0.2	Bent crystal production & characterization	
Francesco Sgarbossa (LR)	INFN Legnaro	0.4	RBS characterization	
Davide De Salvador	INFN Legnaro	0.1	Crystal design and RBS characterization	
Chiara Carraro	INFN Legnaro	0.1	RBS characterization	

INFN Laboratories in Ferrara

- Optical interferometry laboratories for nanometric morphological characterizations
- High-precision automated dicing station
- Clean Rooms
 - Chemical laboratories for cleaning samples
 - High resolution X-rays diffractometry
 - IR interferometry

INFN laboratory in Legnaro

AN2000 accelerator for **Rutherforth Backscattering** characterizations: test of 2 MeV proton channeling after silicon machining processes

External Facilities

BM05 topography for crystal lattice quality validation thanks to EIC pathfinder Tekno-CLS

H8 beamline of CERN for direct channeling measures @ 180 GeV Setup and beam time request together with STORM INFN project

Conclusions

- Planar channeling in bent crystal is a powerful tool for numerous applications in a wide energy range of accelerators
- Maximum channeling efficiency is limited by scattering with nuclei at the entrance of the crystal
- GALORE propose to test a new design for bent crystal which suppresses such limitation
- The results of GALORE can impact on any channeling-based application and unlock novel crystal-based technology in particle accelerators

THANK YOU FOR YOUR ATTENTION !

$\ensuremath{\text{SIMOX}}$ structure I

SIMOX structure II

Implementation of the method of the cut through a buried SiO_2 layer.

- Thermal annealing restores silicon cristalline quality and creates a buried SiO₂ layer.
- \checkmark Interfaces between Si and SiO₂ are well terminated.
- Misalignment between silicon layers in available SIMOX structures: less than 0.7 Å/mm

CHANNELING in bent crystals

Particle	Energy	Deflection	Thickness	Field of equivalent dipole
lons / protons	6500 GeV	50 µrad	4 mm	216 T
Electrons	0.855 GeV	1500 µrad	0.015 mm	285 T
Positrons	20.53 GeV	400 µrad	0.060 mm	456 T
Charmed Baryons	2000 GeV	14000 µrad	70 mm	1134 T

Channeling applications...with GALORE

