CALIPSO

CAlorimetry at Low temperatures with ImProved Scintillation and Optimized time resolution

Irene Nutini Università degli Studi Milano Bicocca INFN Milano Bicocca

Indice e punti chiave

- Calorimetri criogenici nella fisica astro-particellare e nucleare
 - Motivazione del progetto CALIPSO
- Il progetto CALIPSO
 - WP 1 Sensoristica e readout
 - WP 2 Cristalli scintillanti
 - WP 3 Misure sperimentali
 - Organizzazione delle attività
- Applicazioni e prospettive del progetto CALIPSO

Calorimetri criogenici nella fisica astro-particellare e nucleare

Rivelatori a stato solido a bassa temperatura - Calorimetri criogenici

Energia depositata \rightarrow termalizzata in assorbitore cristallino (fononi termici) \rightarrow variazione di temperatura $\Delta T = E/C$ - Criogenia al mK: T ~ 10-50 mK - piccola C - Assorbitore: scelta flessibile e ampia \Rightarrow Macro-calorimetri: massa ~10-100g, dinamica 30 eV-10 MeV, $\Delta E/E ~ 0.2\%$ Boppia lettura: calore + scintillazione

- Rapporto luce/calore ⇒ PID
- Lettura luce di scintillazione con calorimetro criogenico a minore C ⇒ (migliore) informazione temporale

Calorimetri criogenici nella fisica astro-particellare e nucleare

Altri sensori: **TES, MMC, KIDs** \rightarrow alto guadagno, sensori più veloci, **tecnologia complessa**

Sensori di temperatura per calorimetri criogenici

Sensori accoppiati ad assorbitore. Raccolta fononi assorbitore ⇒ conversione in segnale elettrico

Termistori a semiconduttore

- Forte variazione di resistenza al variare di T

per produzione e operazione dei sensori

- Ge Neutron Transmutation Doping (Ge-NTD)
- Sensibili su **ampio range di temperature** (10-50 mK)
- Alta impedenza (10-100 Mohm): elettronica standard
- Ottima riproducibilità su larga scala (> 1000 chip) e uniformità prestazioni

Ge-NTD 3x3x1 mm³

Esperimento CUORE: 988 cristalli ognuno con un Ge-NTD

Calorimetri criogenici nella fisica astro-particellare e nucleare

Calorimetri con sensore NTD: limitati nella velocità di risposta

Risposta temporale complessa:

- Salita esponenziale (non istantanea) _____
- Costanti di decadimento multiple
- \rightarrow Limiti attuali di risoluzione temporale: $\delta t \sim 1 ms$

- . Accoppiamento NTD-assorbitore
 - e cap. termica NTD
- II. Scelta **bias** NTD
- III. Meccanismi di rilascio ritardato di energia
- IV. RC fili di lettura

https://arxiv.org/pdf/2101.05029.pdf

Motivazione del progetto CALIPSO

Una limitata risoluzione temporale può avere un impatto non trascurabile sulla sensibilità di esperimenti che utilizzano la tecnologia dei macro-calorimetri criogenici

Energy (keV)

Il progetto CALIPSO

CALIPSO

CAlorimetry at Low temperatures with ImProved Scintillation and Optimized time resolution

Motivazione: Superare i limiti in velocità di risposta (~ 1 ms) delle attuali implementazioni dei rivelatori criogenici scintillanti con lettura a NTD

Obiettivo: Realizzazione di un prototipo di macro-calorimetro criogenico scintillante con sensori NTD, con **risoluzione temporale δt < 0.05 ms** e **risoluzione energetica ~0.2%**

Il progetto CALIPSO

Workpackages del progetto del rivelatore per CALIPSO

WP 1: Sensoristica e readout

WP 1(a) Nuovi accoppiamenti NTD-rivelatore

Lettura segnale termico con singolo NTD → Migliori accoppiamenti termici per **limitare** introduzione di **costanti di tempo spurie** WP 1(b) Aggiunta di un secondo NTD per il readout

NTD_1 std op. - alto SNR
→ misura di Energia
NTD_2 alto bias - impulsi
più veloci → informazione
temporale
[Risk mitigation strategy]

WP 2: Drogaggio del cristallo scintillante

Aumento della resa in luce, anche a T ~ 10 mK → miglioramento del timing di segnale di luce

WP 3: Misure sperimentali

Team progetto CALIPSO

Gruppo di ricerca	Istituzione	Competenze e attività				
Dott.sa Irene Nutini	INFN MiB - Fisica	Sviluppo e caratterizzazione dei				
Dott. Matteo Biassoni		calorimetri criogenici: design, performance, radio-purezza				
Dott.sa Elena Ferri		(WP 1, WP 3)				
Dott. Luca Gironi						
Prof. Fabio Bellini	INFN Roma 1					
Dott.sa Francesca Cova	INFN MiB - Scienza	Progettazione del drogante e				
Prof. Mauro Fasoli	dei materiali	caratterizzazione della scintillazione (WP 2, WP 3)				

Collaborazione scientifica per l'attività del progetto:

- Crescita dei cristalli: Nikolaev Institute of Inorganic Chemistry Laboratory of crystal growing, Dott. V. N. Shlegel
- Sensoristica nuovi accoppiamenti: INFN Ferrara, Dott. A. Mazzolari

CALIPSO WP 1: Sensoristica e readout

WP 1(a): Accoppiamenti tra substrati (es. assorbitore/NTD)

CALIPSO WP 1(a) Accoppiamenti assorbitore-NTD: approccio tradizionale

Adhesive bonding Incollaggio NTD su cristallo con colle/resine

Approccio utilizzato negli ultimi 25-30 anni

Velo di colla ⇒ spots multipli Strumenti automatici per incollaggi precisi e riproducibili per centinaia/migliaia di sensori → Minore variabilità forma segnale, ma risoluzione temporale limitata

CUORE gluing robot https://iopscience.iop.org/article/10.1088/1748-0221/11/07/P07009

CALIPSO WP 1(a) Accoppiamenti assorbitore-NTD: approccio innovativo (1)

Silicate bonding

Tecnica sviluppata per applicazioni astronomiche da circa 20 anni. Soluzione di idrossido in acqua per formare un legame chimico tra ossidi o materiali facilmente ossidabili.

\rightarrow Silicate bonding per CALIPSO

Sospensione di nanoparticelle di silicato di sodio $((Na_2O)_x \cdot (SiO_2)_y)$ per accoppiamento Ge-NTD su cristalli e LDs.

- Rugosità superfici (ottimale < 10nm)
- Effetto di utilizzo di 'gocce di soluzione acquosa' su superfici di cristalli igroscopici (es. Li₂MoO₄)
- Test forza e conduttanza del bonding a T ~10 mK

Silicate bonding: due substrati SiO₂- VIRGO

Primo test silicate bonding: Ge-NTD / Li₂MoO₄ (realizzato in collab. con INFN Ferrara)

INFN MiB (Fisica)

CALIPSO WP 1(a) Accoppiamenti assorbitore-NTD: approccio innovativo (2)

Eutectic bonding

Leghe eutettiche utilizzate per incollaggio di wafer (Si) in fabbricazione semiconduttori.

\rightarrow Eutectic bonding per CALIPSO

Lega eutettica Au-Ge dell'elettrodo del NTD su substrato Ge (LD) o su ossido (cristalli)

- Effetti di outgassing alla superficie dei cristalli o stress termici post riscaldamento (~150-300°C) e pressione
- Stabilità e proprietà delle giunzioni eutettiche NTD-rivelatori a basse temperature (fino a 10 mK)

Sezione di un bonding eutettico Au-Si tra due substrati in Si

Schema realizzazione eutectic bonding: Ge-NTD / Ge-wafer

INFN MiB (Fisica)

CALIPSO WP 2: Cristalli scintillanti

Ottimizzazione della scintillazione: approccio alternativo

Drogaggio dei cristalli con centri attivatori

 \rightarrow aumento della resa in luce del cristallo stesso, anche a bassa T

Scelta dello ione drogante per

fisica degli eventi rari alle basse temperature:

- incorporazione nel reticolo
- proprietà di emissione vs. banda di trasmissione del reticolo
- droganti con isotopi stabili (bassa radioattività)
- ioni che non introducono centri para/ferromagnetici (> capacità termica a bassa T)
- evitare introduzione di trappole o meccanismi che possano ritardare (o ridurre) emissione luminosa

CALIPSO WP 2: Drogaggio dei cristalli scintillanti

Drogaggio di cristalli scintillanti Li₂MoO₄ per CALIPSO

INFN MiB (Fisica + Scienza dei Materiali)

CALIPSO WP 3: Misure sperimentali

Caratterizzazione della scintillazione (10-300K) @ UniMiB Scienza dei Materiali

Studio proprietà ottiche dei cristalli, natura di centri di emissione \rightarrow Feedback per la crescita di nuovi cristalli

Misure criogeniche (10-50mK) @ UniMiB Fisica - Lab. Criogenia

Prestazioni nuovi rivelatori (accoppiamenti, cristalli,..) operati effettivamente come calorimetri criogenici

Impulsi di calore

per cristalli TeO2

in montaggi

differenti

Rivelatori TeO₂ con differenti montaggi, installati nel criostato di Lab.Criogenia

<u>https://doi.org/10.1140/epjp/s13360-021-01978-9</u> <u>https://doi.org/10.1007/s10909-021-02639-y</u>

collegato a WP1 (e a WP2)

collegato a WP2

Organizzazione delle attività per CALIPSO

Sinergie e impatto su diversi campi di ricerca

- Ricerca del decadimento 0vββ (CSN2)

utilizzo di calorimetri scintillanti arricchiti in isotopo $\beta\beta$ su scala 1 ton/1000 rivelatori per la prossima generazione di esperimenti (CUPID) \rightarrow abbattimento del fondo - pileup $2\nu\beta\beta$

Misure di precisione di spettri di decadimento β e ββ (CSN2 e CSN3)
 Messa a punto di modelli nucleari

Sensibilità a variazione di forma spettro:

- Alta risoluzione energetica
- Abbattimento sistematiche su sorgente
- Alta statistica: assorbitori di maggiore massa / arricchimento
 ⇒ alto rate → necessaria alta risoluzione temporale per reiezione pileup

Misure con calorimetri criogenici (Novità!)

- Primi prototipi: ln_2O_3 crystal (0.1 cm³) + Ge-NTD $\rightarrow t_{Rise} \sim 4ms$, pileup ~10%, β -rate 100mHz)
- CALIPSO → macro-calorimetri

https://journals.aps.org/prc/pdf/10.1103/PhysRevC.95.024327

Modelli termici per esperimenti con macro-calorimetri criogenici (CSN2)

CUORE/CUPID - ββ

COSINUS - dark matter

 Nuovi design strutturali di calorimetri criogenici per eventi rari (CSN5 - CSN2) (Futuro!) Se nuove strategie di accoppiamenti termici funzionali a ~10mK (migliore termalizzazione, impulsi più veloci, riduzione del rumore termico) → Nuovi design di accoppiamenti meccanici, sospensioni e termalizzazioni

Cu-frames + PTFE spacers

Suspension fibers bonded to crystals

CALIPSO: dettaglio costi

		1° anno (k€)	2° anno (k€)	Tot (k€)
Consumi	Liquidi criogenici (LHe, LN2)	21	42	63
	Produzione cristalli drogati	15	10	25
	Wafer Ge per LD	2.5	2.5	5
	Materiali per bondings e montaggi	3	4	7
	Pb per schermo criostato		10	10
Inventariabile	DAQ e FE	2	4	6
	Strumentazione per caratt. cristalli	30		30
Trasferte	Meetings per attività sperimentali	1.5	2.5	4
		75	75	150

Il progetto CALIPSO

Prototipo di macro-calorimetro criogenico scintillante con sensori NTD, con risoluzione temporale $\delta t < 0.05$ ms e risoluzione energetica ~0.2%

- Novità e originalità delle tecnologie e tecniche proposte, rispetto ad approcci tradizionali per realizzazione rivelatori termici
- Miglioramento prestazioni dei macro-calorimetri, affiancato da migliore comprensione risposta
- Approccio di misura comparativo (diverse tecniche, diversi drogaggi,..)
- **Sinergie** tra gruppi e istituzioni con diverse expertise e competenze
- **Applicazioni multiple** in campi di ricerca INFN - fisica delle astroparticelle e nucleare

Schema prototipo di CALIPSO

Grazie per l'attenzione

Backup

Evoluzione del segnale in un rivelatore termico: versione semplificata

Assorbimento e termalizzazione

Una particella interagisce nell'assorbitore. Tutta l'energia depositata E si converte in calore e la temperatura dell'assorbitore aumenta di una quantità $\Delta T = E/C$. La temperatura del sensore aumenta di conseguenza, producendo una variazione misurabile delle sue proprietà (elettriche, magnetiche...)

Recupero della temperatura

Il calore fluisce attraverso la conduttanza G verso il bagno e la temperatura del bolometro torna al valore iniziale $T_{\rm b}$ con un tempo caratteristico τ = C/G

Macrocalorimetri: risposta temporale

Caso ideale:

- Salita istantanea: rilascio istantaneo di energia
- Discesa con una costante di decadimento: recupero della temperatura di base

Caso reale (considerando anche la lettura del sensore e gli accoppiamenti)

- Salita esponenziale: effetti elettrici (RC dei fili, filtri) + rilascio di energia non istantaneo (rispetto ai tempi di termalizzazione)
- Discesa con più di una costante di decadimento: modello termico a più elementi (termometro, accoppiamenti non trascurabili) e/o meccanismi di rilascio ritardato di energia (scintillazione, intrappolamento) e/o feedback elettrotermico del sensore
- \rightarrow limiti alla risoluzione temporale intrinseca dei rivelatori

Macrocalorimetri con sensore NTD (esempi): risposta temporale

Gli attuali LTD con lettura a NTD si presentano come rivelatori con una risposta temporale complessa e con risoluzione temporale limitata (δt ~ 1ms), e possono sostenere rates ~1-100 Hz

Applicazioni in differenti filoni di ricerca e esperimenti (approvati in CSN2):

- Ricerca del decadimento ββ senza emissione di neutrini: CUORE (TeO₂ + NTD: 1 ton / 1000 rivelatori) CUPID-dimostratori (ZnSe/Li₂MoO₄, Ge-LD + NTD: ~ 10 kg / 20-30 rivelatori) CUPID-baseline (Li₂MoO₄, Ge-LD + NTD: 1 ton / 1500 rivelatori)
- Studio del decadimento β (o cattura elettronica) e misura di spettri energetici β: HOLMES (¹⁶³Ho:Au + TES: qualche g / 100-1000 rivelatori)
- Ricerca diretta di materia oscura: COSINUS (Nal, Si-LD, CdWO₄ carrier + TES/NTD: 50g - 200g \rightarrow 4 kg / 25 rivelatori), CRESST (CaWO₄ + TES: 20g - 200g / 10-20 rivelatori)
- Misura di scattering coerente di neutrini: NUCLEUS (CaWO₄/Al₂O₃ + TES (/KID): 10 g \rightarrow 1 kg / 20 rivelatori)
- Ricerca e misura di decadimenti alfa/beta rari

Il progetto CALIPSO: gruppo di ricerca

Nome	Unità	Ruolo	Età	FTE
Irene Nutini	INFN MiB (Fisica)	PI	31	0.8
Luca Gironi	INFN MiB (Fisica)	Collaboratore	40	0.3
Matteo Biassoni	INFN MiB (Fisica)	Collaboratore	36	0.3
Elena Ferri	INFN MiB (Fisica)	Collaboratore	38	0.3
Mauro Fasoli	INFN MiB (Sc. dei Mat.)	Referente unità	49	0.3
Francesca Cova	INFN MiB (Sc. dei Mat.)	Collaboratore	29	0.2
Fabio Bellini	INFN Roma1	Referente unità	44	0.2
Totale gruppo di ricerca				2.4

Il progetto CALIPSO

Approcci di sviluppo del rivelatore per CALIPSO

macro-calorimetro criogenico scintillante con sensore NTD di readout, con risoluzione temporale < 0.05 ms

CALIPSO WP 1(a) Accoppiamenti assorbitore-NTD: approccio tradizionale

Adhesive bonding Incollaggio NTD su cristallo con colle/resine

Approccio utilizzato negli ultimi 25-30 anni Resine bicomponenti con breve tempo di indurimento (eg. Araldite: ~1 h @ 25°C), bassa radioattività e buona conduttanza termica a basse temperature

Velo di colla \Rightarrow spots multipli;

Strumenti automatici per incollaggi precisi e riproducibili per centinaia/migliaia di sensori

→ Minore variabilità di forma del segnale, ma risoluzione temporale limitata

CUORE gluing robot

CALIPSO WP 1(a) Accoppiamenti assorbitore-NTD: approccio innovativo

Accoppiamenti assorbitore-NTD

- Approccio innovativo del progetto CALIPSO Sviluppare nuovi tipi di accoppiamento NTD-rivelatore, applicabili di routine su un alto numero di rivelatori garantendo una risoluzione temporale migliore e uniforme Due tecniche proposte:
 - "silicate bonding",
 - "eutectic bonding"

INFN MiB (Fisica)

CALIPSO WP 1(a) Accoppiamenti assorbitore-NTD: approccio innovativo (1)

Silicate bonding

Tecnica sviluppata per applicazioni astronomiche da circa 20 anni

(LIGO, VIRGO, Nasa rovers on Mars).

Soluzione di idrossido in acqua per formare un legame chimico tra ossidi o materiali facilmente ossidabili.

Tecnica appropriata per sistemi in ultra-alto vuoto, temperature criogeniche (fino a ~10 K) e alti carichi meccanici.

→ Silicate bonding per CALIPSO: utilizzo di sospensione di nanoparticelle di silicato di sodio $((Na_2O)_x \cdot (SiO_2)_y)$ per l'accoppiamento dei termistori Ge-NTD sui cristalli e sui rivelatori di luce.

- Rugosità delle superfici (ottimale ~nm)
- Effetto di utilizzo di 'gocce di soluzione acquosa' su superfici di cristalli igroscopici (es. Li₂MoO₄)
- Test di forza e conduttanza del bonding a temperature ~10 mK

Silicate bonding: due substrati SiO₂- VIRGO

Primo test silicate bonding: Ge-NTD / Li_2MoO_4 testato fino a 77K (realizzato in collab. con INFN Ferrara)

INFN MiB (Fisica)

CALIPSO WP 1(a) Accoppiamenti assorbitore-NTD: approccio innovativo (1)

Hydroxide cathalysis bonding (HCB) → silicate bonding (bonding HCB con soluzione di silicato di sodio)

Si utilizza una soluzione di idrossido in acqua per formare un legame chimico tra ossidi o materiali ossidabili.

Gli ioni idrossido (OH-) tendono a legare con vari materiali in forma ossida (es. SiO2 - silice/vetro, Al2O3 - zaffiro) oppure anche con materiali facilmente ossidabili (es. silicio, SiC, alluminio, vetri trattati, vetroceramiche,..). Soluzioni idrosside comunemente utilizzate per il bonding sono KOH e NaOH principalmente per accoppiamenti diretti SiO2-SiO2, altrimenti si utilizzano anche **soluzioni di silicato di sodio (NaOH + SiO2) per bonding tra substrati diversi**.

CALIPSO WP 1(a) Accoppiamenti assorbitore-NTD: approccio innovativo (2)

Eutectic bonding

Le leghe eutettiche sono spesso utilizzate per l'incollaggio di wafer (Si, Ge) nella fabbricazione di semiconduttori e nell'industria microelettronica. Accoppiamento di substrati con uno strato intermedio metallico, che produce un sistema eutettico. **Saldature eutettiche: deposizione metallo eutettico, riscaldamento del sistema (~150-300°C) e pressione tra i substrati.**

\rightarrow Eutectic bonding per CALIPSO:

1. Accoppiamento dei Ge-NTD ai rivelatori di luce (Ge-wafer): lega eutettica Au-Ge dell'elettrodo del NTD, o layer intermedio di lega Au(88%):Ge(12%)

2. Accoppiamento dei Ge-NTD ai cristalli (ossidi): lega Au-Ge dell'elettrodo su ossido, o aggiunta di layer intermedio di Indio

- Effetti di outgassing alla superficie dei cristalli o stress termici per riscaldamento per realizzazione lega eutettica
- Stabilità e proprietà delle giunzioni eutettiche NTD-rivelatori a basse temperature (fino a 10 mK)

Sezione di un bonding eutettico Au-Si tra due substrati in Si

Schema realizzazione eutectic bonding: Ge-NTD / Ge-wafer

CALIPSO WP 1(a) Accoppiamenti assorbitore-NTD: approccio innovativo (2)

Eutectic bonding

Le formazioni eutettiche più diffuse sono Au-Si e Al-Si; questa procedura si utilizza principalmente **per accoppiare wafers di** Si utilizzando un coating in film di Au/AI. Nel caso di accoppiamenti tra Si e vetro (SiO2), si deposita anche un sottile strato di adesione intermedio (es. Ti/Cr) tra l'ossido e il metallo eutettico, per facilitare l'aderenza tra i due. Altre leghe eutettiche per il bonding sono: Au-Ge, Au-In, Al-Ge,...

Saldatura eutettica: sottoporre i due elementi a riscaldamento (Te~150-500 °C, in base alla lega eutettica; Te < Tf) e pressione per creare la giunzione eutettica \rightarrow il coefficiente di espansione termica tra i substrati deve essere sufficientemente similare, per evitare stress termici e/o incrinature del bonding.

CALIPSO WP 1(b) Aggiunta di un secondo NTD per il readout

Doppia lettura: NTD_1 + NTD_2

- NTD_1 operato in maniera convenzionale: misura di energia, alto SNR
- NTD_2 operato in condizioni di alto bias → impulsi più veloci e maggiore risoluzione temporale (a scapito di SNR e linearità della risposta)

Valutazione se doppia lettura con entrambi NTD polarizzati, influenza generazione segnale termico e temperature di termalizzazione.

Si utilizzerà approccio WP 1(b) se le varie tecniche di bonding proposte in WP 1(a) si dimostrano non-funzionali e/o inefficaci per gli obiettivi del progetto.

INFN MiB (Fisica)

<u>https://arxiv.org/pdf/2101.05029.pdf https://doi.org/10.1016/j.nima.2021.165451</u>

CALIPSO WP 1(b) Aggiunta di un secondo NTD per il readout

Doppia lettura: NTD_1 + NTD_2

- NTD_1 operato in maniera convenzionale: misura di energia, alto SNR
- NTD_2 operato in condizioni di alto bias (*): impulsi più veloci e maggiore risoluzione temporale (a scapito di SNR e linearità della risposta), per ottenere solo info temporale da combinare con info energetica da NTD_1

(*) Circuito di polarizzazione del NTD (R_{load} >> R). Corrente di polarizzazione rilascia potenza per effetto Joule sul termistore, riscaldandolo → **feedback elettrotermico** Per alte correnti di bias, curva I-V (LC) del termistore devia dalla linearità e porta a comportamento non ohmico→ influenza forma di impulso termico: impulsi più veloci e distorsioni nella discesa

INFN MiB (Fisica)

CALIPSO WP 2 Ottimizzazione della scintillazione: approccio tradizionale

Aumento di SNR e efficienza dei rivelatori di luce

[spessore del LD, dimensione NTD, temperatura e punto di lavoro NTD, riduzione del rumore]

→ basse soglie per la rivelazione della debole luce di scintillazione dal cristallo, buona risoluzione, segnali veloci

RiseTime @ 20 mK

CALIPSO WP 2: Drogaggio dei cristalli scintillanti

Drogaggio di cristalli scintillanti Li₂MoO₄ per CALIPSO

Ottimizzazione della scintillazione: approccio alternativo

Drogaggio di cristalli scintillanti LMO - calorimetri criogenici

- 1. Identificazione del drogante in base al tipo di cristallo
- 2. Crescita cristalli drogati
- 3. Caratterizzazione scintillazione @4K-300K
- 4. Cristallo come calorimetro criogenico: caratterizzazione di risposta temporale e resa in luce @10mK

Possibili **elementi droganti per i LMO** (1.) - considerazioni preliminari (da esperienza di drogaggio PWO): ioni luminescenti isovalenti (es. Cu1+, Ag1+ in sostituzione al Li1+), metalli di transizione aliovalenti luminescenti (es. Mn2+, Cr3+). Scelta del drogante vincolata anche dalle condizioni per la **crescita dei cristalli** (2.): possibili problemi pratici legati alla natura dei precursori del drogante o all'incorporazione dello ione nel sito desiderato.

Ottimizzazione della scintillazione: approccio alternativo

Drogaggio di cristalli scintillanti LMO - calorimetri criogenici

\Rightarrow

Investigazione di proprietà ottiche e natura dei centri di emissione nel cristallo (3.):

- Curve di trasmissione (o curve di assorbimento) → Struttura a bande del cristallo, banda di trasparenza, impurezze che introducono picchi di assorbimento.
 Spettrofotometro
- Spettri di luminescenza → identificare le frequenze di emissione luminosa. Eccitazioni UV - fotoluminescenza (PL) - si eccitano selettivamente i centri luminescenti; eccitazioni X-rays - radioluminescenza (RL) - si stimola l'emissione di tutti i centri luminescenti disponibili fornendo energia all'intera matrice cristallina. Rivelatori CCD e/o monocromatori
- Misure di termoluminescenza (TSL) → Studio di trappole che possono influenzare la dinamica di scintillazione - Campioni irraggiati con X-rays a temperatura T0, tale da far riempire le eventuali trappole nel reticolo; si scalda dunque il campione con una rampa di temperatura e si misura l'emissione luminosa → Curva di luce emessa in funzione della temperatura di riscaldamento

Ottimizzazione della scintillazione: approccio alternativo

Cristalli scintillanti LMO - calorimetri criogenici

 ${\rm Li_2MoO_4}$ Scintillatore intrinseco (centro luminescente ${\rm MoO_4}^{2^-}$ + emissioni di difetto)

D.A. Spassky et al. / Journal of Luminescence 166 (2015) 195-202

O.P. Barinova et al. / Nuclear Instruments and Methods in Physics Research A 613 (2010) 54-57

Emission bands

Energy	(FWHM)	PL decay time	
1.98 eV	(0.54 eV)		@ 30-80 K
2.08 eV	(0.7 eV)	slow (130 µs @ 4K)	STE
2.25 eV	(0.7 eV)	fast (35 µs @ 4K)	Trapped Exc

Emission peak maximum - dependent on the growth technique and contamination levels of initial materials (Li_2CO_3 , MoO_3): Czochralski ~ 550nm Czochralski low thermal gradient && higher purity ~ 600nm

(b) Luminescence spectra of slower(1) and faster(2) decay components of Li2MoO4 at Eex~4.75 eV, T=4.2K. The intensity of faster component is multiplied by factor of 5.

Temperature, K
 (a) Temperature dependence of fast(1) and slow(2) components in lumi nescence decay; Eem~2.10eV, Eex~4.75 eV.
 (b) Temperature dependence of the Li2MoO4 emission (Eem~2.10eV) under UV (Eex~4.75 eV) excitation(1) and integrated intensities of the fast(2) and slow(3) components of decay.

Organizzazione delle attività per CALIPSO

Timeline delle attività e costi principali

Rivelatore di CALIPSO

	Rivelatore composito	Cristalli Li ₂ MoO ₄ (~2x2x2 cm ³) e rivelatori di luce in Ge, entrambi con readout NTD	~ 25 k€ cristalli (puri e drogati) + 5 k€ cialde Ge							
	Tecnologie e tecniche innovative	→ Nuovi accoppiamenti NTD-assorbitore (e/o secondo NTD su Ge-LD) → Drogaggio dei LMO con centri di luminescenza	~ 7 k€ materiali bondings e realizz. riv. compositi							
	Misure sperimentali	→ Caratterizzazione della scintillazione (@10K-300K) → Tests di performance criogeniche (forma del segnale, resa in luce, SNR) @10-50 mK	~ 30k€ strum. mis. scint. @10-300K + ~ 60 k€ consumi (LHe) runs crio. @10-50 mK							
	Obbiettivo	Identificazione della configurazione che permette di ottenere risoluzione temporale < 0.05 ms								
Si costruisce filiera di svilunno e test di nuova tecnologia										

Si costruisce filiera di sviluppo e test di nuova tecnologia da applicare poi anche ad altri calorimetri criogenici scintillanti

Organizzazione delle attività per CALIPSO

CALIPSO: workpackages

Timeline delle attività: workpackages

WP1 - Sensoristica e design rivelatori presso UniMiB - Dipartimento di Fisica

WP2 - Cristalli scintillanti presso UniMiB - Dipartimento di Scienza dei Materiali

WP3 - Misure sperimentali Caratterizzazione della scintillazione Runs criogenici (10-50 mK) presso UniMiB - Dipartimento di Fisica -Laboratorio di Criogenia

CALIPSO: Gantt plot

Timeline delle attività: cronoprogramma

-																									
							1° anno	- 2022							2º anno - 2023										
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
						_																			
	Produzione LMO drogati per maggiore resa in luce	LMO di	rogati (1))						LMO di	rogati (2	2)				LMO di	rogati (3)								
WP1	Misure scintillazione 5K-300K @Dip. Sci.dei Mat.			Ļ	Misura LMO(1)		M2					Ļ	Misura LMO(2)	М5			4	Misura LMO(3))					
	Produzione LDs	LD(0)												LD(1)											
	Design e preparazione nuovi incollaggi NTD-cristalli	incoll. o LMO(0	crist								incoll. o LMO(1	crist)		L	incoll o	crist)				Ļ	incoll. c LMO(3)	rist			
_	Design e preparazione nuovi accoppiamenti NTD-LDs				4	incoll. L	_D(0)								-				-	incoll. I	_D(1)				
	Assemblaggio rivelatori (incoll. std, montaggi, readout)		4									Ľ				L.									
WP3	Misure criogeniche (10-50 mK)			L,	LMO(0) LD(0)	+	M1	Ļ	LMO(1) LD(0)	+	МЗ		Ļ	LMO(1 LD(0))+	M4	L,	LMO(2 LD(1)	() +	M6			Ļ	LMO(3) LD(1)	+
																									M7

Principali milestones (M) del progetto:

- M1: Performance criogeniche cristalli 'standard' (LMO-puri) con nuovi accoppiamenti
- M2: Prima produzione di cristalli LMO drogati (LMO-1): caratterizzazione
- M3: Performance criogeniche di cristalli LMO drogati (LMO-1) con sensoristica standard
- M4: Performance criogeniche di cristalli LMO drogati (LMO-1) con sensoristica ottimizzata
- M5: Nuova produzione di cristalli LMO drogati (LMO-2): caratterizzazione
- M6: Performance criogeniche di cristalli LMO drogati (LMO-2) con sensoristica ottimizzata

M7: Design finalizzato di sensoristica-accoppiamenti e cristallo-drogaggi per ottimizzazione risposta temporale e resa in luce a basse temperature

CALIPSO: valutazione del rischio

	Tema	Problema	Mitigazione	Ritardo e conseguenze
WP2	Produzione LMO drogati	I crescitori ritardano a produrre i cristalli drogat	Minor numero di produzioni di cristalli LMO	Si riducono le misure di caratterizzazione della scintillazione
		I crescitori del NIIC SB RAS non riescono produrre cristalli LMO drogati di buona qualità	Si contatta un altro crescitore	Ritardo: tempi tecnici per contatti e ordine con nuovi crescitori. Si riducono le produzioni di cristalli e le misure di caratterizzazione
WP1	Accoppiamenti HCB NTD- rivelatori	L'accoppiamento HCB con soluzione standard non è efficace: motivi chimici	Provare diverse soluzioni idrossido per l'accoppiamento HCB	Ritardo: tempi tecnici per i nuovi test di soluzioni. Si riducono le prove di accoppiamento con eutettico
		L'accoppiamento HCB con soluzione standard non è efficace: motivi rugosità cristalli	Riprovare lo stesso accoppiam. HCB su rivelatori con superfici più levigate	Ritardo: tempi tecnici lavorazione superfici cristalli/ rivelatori di luci.Si riducono le prove di accoppiamento con eutettico
		L'accoppiamento HCB con soluzione acquosa danneggia le superfici dei LMO, cristalli igroscopici	Spostamento sui test di accoppiamenti eutettici tra NTD e cristallo	Utilizzo di accoppiamento HCB solo per sensori di luce. Si procede in parallelo con accoppiamento eutettico per NTD-LMO e HCB per NTD-LD
	Accoppiamenti eutettici NTD-rivelatori	L'accoppiamento eutettico necessita un riscaldamento che danneggia le superfici	Valutazione di leghe eutettiche a minore temperatura.	Si aumentano le prove di accoppiamento con eutettico. Altrimenti, focalizzazione solo su accoppiamenti HCB
	Dual readout: secondo NTD con feedback - sensore veloce	Il secondo sensore NTD operato a alto bias, scalda troppo il rivelatore	Continuare la lettura in dual readout, se il SNR del primo NTD si mantiene accettabile	Ritardo: tempi tecnici per caratterizzare la nuova configurazione di lavoro del rivelatore e stimare effetto sul SNR del primo sensore.
		Il dual readout inficia la risoluzione energetica del primo sensore	Mantenere la lettura di calore con singolo readout, un solo NTD	Si procede focalizzandosi sull'ottimizzazione accoppiamenti NTD-rivelatori per migliore risoluzione temporale del singolo NTD
WP3	Runs criogenici	Problemi al criostato (es. fughe, connessioni tra stadi termici,)	Analisi del sistema criogenico e operazioni hardware per risolvere i problemi	Ritardo: tempi tecnici per controllo e manutenzione del sistema criogenico, se elementi di ricambio già presenti in Lab.Criogenia (+ tempi per ordine e consegna eventuali altri elementi per sostituzioni). Si riducono i runs di caratterizzazione a 10-50 mK
		Aumenta il costo di LHe	Si contatta un altro fornitore e/o si ordina meno Elio	Si riducono i runs di caratterizzazione a 10-50 mK

CALIPSO: dettaglio costi

Per il progetto CALIPSO, si prevede una spesa totale di **150k€**, suddivisa in **75k€ per il primo anno, e 75k€ il secondo anno**.

Le risorse finanziarie necessarie per il progetto sono principalmente legate a **consumi** e strumentazione per la produzione dei rivelatori e l'effettuazione delle misure sperimentali.

Le maggiori spese coprono l'acquisto di elio liquido (LHe) per il raffreddamento del criostato a diluizione per i runs criogenici a (10-50) mK, e la produzione dei cristalli LMO drogati per una maggiore resa in luce. Inoltre si prevedono spese per manutenzioni e sostituzioni di strumenti per le caratterizzazioni della scintillazione a (10-300) K: termoregolatore TSL e testa fredda del criostato per RL.

CALIPSO: dettaglio costi

		1°anno (k€)	2°anno (k€)	Tot (k€)
INFN MiB				
Consumi	LHe	20	40	60
	LN2	1	2	3
	Materiali per montaggi (Cu, acrilico)	1,5	2	3,5
	Materiali per bondings	1,5	2	3,5
	Produzione wafer Ge per LDs	2,5	2,5	5
	Pb per schermatura criostato		10	10
Inventariabile	PC acquisizione	2		2
	Boards DAQ/FE dedicate		4	4
	Termoregolatore TSL	20		20
	Testa fredda criostato RL	10		10
Trasferte	Meetings per attività sperimentali	1,5	2,5	4
INFN Roma1				
Consumi	Produzione cristalli drogati	15	10	25
Totale (k€)		75	75	150

Ricerca del decadimento 0vββ - fondo del 2vββ

Risoluzione energetica

Risoluzione temporale per riv. termici

Risposta lenta dei rivelatori termici \rightarrow **Pileup accidentale tra eventi 2vßß e/o con eventi di fondo** - limita l'abbattimento del rate nella ROI per la ricerca di 0vßß. **Rivelatori Mo-based**: ¹⁰⁰Mo 2vßß fast decay time = 7.1 × 10¹⁸ yr \rightarrow 3 mHz rate 2vßß per i rivelatori di CUPID (300g LMO arricchiti al 100% in ¹⁰⁰Mo)

Bkg in ROI: $(2.3 \pm 0.5)10^{-4}$ cnt/(keV kg yr) per δ t~1ms

Ricerca del decadimento 0vββ - CUPID: risoluzione temporale e abbattimento del fondo

	Massa ¹⁰⁰ Mo	Tecnologia	Bkg in ROI	Ris. temporale e SNR necessari	Stato e prospettive		
CUPID- baseline	240 kg	Li ₂ MoO ₄ (cristalli arricchiti in isotopo ¹⁰⁰ Mo) + Ge-LD + NTD con incollaggio standard	1e-4 cts/(keV kg yr) → 5e-5 cts/(keV kg yr) pileup 2vββ	δt ~ 0.14 ms (calore/luce, tRise _{LMO} < 20ms, tRise _{LD} ~ 1ms), SNR ~ 100 (LD)	Bkg goal raggiungibile usando baseline. Possibilità di implementazione soluzioni di CALIPSO sviluppate nel primo anno del progetto		
CUPID- reach	240 kg	stessa di CUPID (~)	2 e-5 cts/(keV kg yr) → 1e-5 cts/(keV kg yr) pileup 2vββ	δt ~ 0.05 ms	Necessità di implementare soluzioni di CALIPSO: Nuovi accoppiamenti		
CUPID- 1ton	1000 kg	miglioramento di performance LD e LMO + multi isotopo (?)	5 e-6 cts/(keV kg yr)	δt < 0.05 ms	della sensoristica (LD, LMO) + Crist. scintillanti drogati		

Misure di precisione di spettri di decadimento ß e ßß (per modelli nucleari)

Studio dei processi nucleari nel dec.β e della fisica del neutrino connessa (SM e oltre)

→ Spectrum shape method: validazione dei modelli nucleari e costanti di accopp. g_A , g_V , matrici nucleari per $(2v/0v)\beta\beta$ → Predizione spettro degli anti-neutrini elettronici da reattore: investigazione dell'anomalia da reattori in mis. osc. neutrini

Tecniche di misura:

- Riv. a semiconduttore:
 - Tracking, alta ris. energetica (~keV) e temporale (~µs) (+)
 - Sorgente esterna affacciata al rivelatore → backscattering, strato morto, pandemonium effect (Ge) (-)
 - Limite di scalabilità in massa rivelatori e di attività sorgenti utilizzabili (-)
- Riv. termici macrocalorimetri
 - Alta ris. energetica (~keV) (+)
 - Sorgente interna all'assorbitore → alta efficienza di assorbimento totale di beta e gamma di disecc. dei nucle figli: abbattimento sistematiche (+)
 - Necessità di migliorare ris. temporale per sorgenti a alta attività (> Bq) - possibili def.spettro per pileup
 - Scalabilità (+)

Misura di precisione di spettri β (per modelli nucleari)

[Novità - primi prototipi ~ g]

- Alta efficienza di **assorbimento totale** di β e γ di diseccitazione dei nuclei figli
- \rightarrow abbattimento sistematiche
- Sorgenti a modesta attività (> Bq) → Possibili deformazioni dello spettro per pileup

- Modelli termici per esperimenti con macro-calorimetri criogenici (CSN2)
 CUORE (CUPID) ββ: identificazione di contributi alla risoluzione energetica, alla risposta temporale e al noise dei cristalli
 COSINUS dark matter: metodologia di ottimizzazione risposta calorimetri scintillanti applicabile anche a cristalli Nal
- Nuovi design strutturali di calorimetri criogenici per eventi rari (CSN5 CSN2)
 (Futuro!) Se nuove strategie di accoppiamenti rivelatore-sensore funzionali a ~10mK: migliore termalizzazione, impulsi più veloci, riduzione del rumore termico di frizione meccanica tra le superfici e stabilità della giunzione → acc. termici → nuovi acc. meccanici sospensioni

Nuovi design di calorimetri criogenici per eventi rari

Suspension system for interferometers. Fused silica mirrors and fibers bonded together with HCB-silicate bonding

es. KAGRA cryogenic suspension system @ 20K Fused silica ears bonded on the side of the fused silica mirror by HCB. Lower sapphire fiber head bonded with the ear and upper head bonded with the sapphire blade by indium bonding (eutectic)

- \rightarrow Suppression of the vibration from outside like seismic vibration and vibration via heat links
- \rightarrow Suppression of vibration noise from the cooling system and thermal noise from the suspension

⇒ Applicare simili considerazioni per design sospensioni e termalizzazioni dei macrocalorimetri @10mK per ricerca eventi rari

