ALCOR for EIC

some background information and feedback from user perspective

P. Antonioli, D. Falchieri, R. Preghenella INFN - Bologna

Introduction

put together designers & users given:

- last 18 months collaborative work (ALCOR on beams, ALCOR to characterize SiPM in the lab)
- "users" feedback toward ALCOR 4 EIC requirements/wishlist
- more info on EIC schedule \rightarrow share timeline info
- share ideas on potential final setup
- be realistic on what we can achieve, but formulate "ask"

Status of project / timeline

R&D 2022-2024 but with some "space" in 2025/2026

construction to be completed by end of 2029

"detector in" (dRICH) Q1 2030

Potential dRICH timeline

Gantt chart: ATHEN	A Detector	r Sub-S	ystem	Quarter	ly Sche	dule																												
dRICH											0010										000.4													
						Starting date	1/01/19		Year		2019		2020		202		2022		2023	4 1	2024	2	025	20	126	1	2027		2028		2029		2030	
						rear:	2019	-	Q	1	2 3	4 1	2 3	4	2	3 4		4	7 10 10	4 1	2 3 4	4 1 2	3 4	1 2	3 4		2 3 4		2 3	4 1 .	2 3	4 1	2 3	4
						Quarter:	1		nQ 00 1 1	1	2 3	4 5	0 6 /	8 >	10 1	1 12 1	3 14 15	161	/ 18 19 1	20 21 2	22 23 2	4 25 26	2/ 28	29 30	31 3.	2 33 3	4 35 3	6 3/ 3	58 39 4	0 41 4	2 43	44 45	46 4/	48
									CD milestol	ne		0			1	-			2		3				1		1				1	-		+
ID Task	Start Time	Year	Quarter	Start Time nG	End Time	Year	Quarter	End Time n	Duration (2																								
																																		+
1 dRICH R&D	1/01/20	2020	1	5	30/06/26	2026	2	30	25																									Т
2 dRICH Procurement	1/01/25	2025	1	25	31/12/28	2028	4	40	15																									
3 dRICH Assembly (In-House)	1/01/28	2028	1	37	31/12/28	2028	4	40	3																									
4 dRICH Assembly (in-situ)	1/10/28	2028	4	40	30/09/29	2029	3	43	3																									
5 dRICH Test (in situ)	1/06/29	2029	2	42	31/12/29	2029	4	44	2																9						1			
6 dRICH Installation	1/01/30	2030	1	45	31/03/30	2030	1	45	0																						1			

- some of the procurement will need to start earlier (aerogel, SiPM, ..)
- electronics might come a little bit later but ASIC for front-end critical
- by 2024/2025 we should achieve an ALCOR4EIC
- 2028 target year for electronics assembly (**dRICH tiles** + ALCOR **FEB** & **ROB**)

How would fit ALCOR in dRICH readout?

current scheme: caveat: used for proposal/costing not necessarily the final one. A lot of work ahead, but useful to focus on requirements

-															
A-1	B-1	C-1	D-1	E-1	F-1	G-1	H-1-	A-1	B-1	C-1	D-1	E-1	F-1	G-1	H-1-
A-2	B-2	C-2	D-2	E-2	F-2	G-2	H-2	A-2	B-2	C-2	D-2	E-2	F-2	G-2	H-2
A-3	B-3	C-3	D-3	E-3	F-3	G-3	H-3	A-3	B-3	C-3	D-3	E-3	F-3	G-3	H-3
A-4	B-4	C-4	D-4	E-4	F-4	G-4	H-4	A-4	B-4	C-4	D-4	E-4	F-4	G-4	H-4
A-5	B-5	C-5	D-5	E-5	F-5	G-5	H-5	A-5	B-5	C-5	D-5	E-5	F-5	G-5	H-5
A-6	B-6	C-6	D-6	E-6	F-6	G-6	H-6	A-6	B-6	C-6	D-6	E-6	F-6	G-6	H-6
A-7	B-7	C-7	D-7	E-7	F-7	G-7	H-7	A-7	B-7	C-7	D-7	E-7	F-7	G-7	H-7
A-8	B-8	C-8	D-8	E-8	F-8	G-8	H-8-	A-8	B-8	C-8	D-8	E-8	F-8	G-8	H-8-
											_		<u> </u>		
A-1	B-1	C-1	D-1	E-1	F-1	G-1	H-1-	A-1	B-1	C-1	D-1	E-1	F-1	G-1	H-1-
A-2	B-2	C-2	D-2	E-2	F-2	G-2	H-2	A-2	B-2	C-2	D-2	E-2	F-2	G-2	H-2
A-3	B-3	C-3	D-3	E-3	F-3	G-3	Н-3	A-3	B-3	C-3	D-3	E-3	F-3	G-3	Н-3
A-4	B-4	C-4	D-4	E-4	F-4	G-4	H-4	A-4	B-4	C-4	D-4	E-4	F-4	G-4	H-4
A-5	B-5	C-5	D-5	E-5	F-5	G-5	H-5	A-5	B-5	C-5	D-5	E-5	F-5	G-5	H-5
A-6	B-6	C-6	D-6	E-6	F-6	G-6	H-6	A-6	B-6	C-6	D-6	E-6	F-6	G-6	H-6
A-7	B-7	C-7	D-7	E-7	F-7	G-7	H-7	A-7	B-7	C-7	D-7	E-7	F-7	G-7	H-7
	B-8	C-8	D-8	F-8	F-8	G-8	H-8-	A-8	B-8	C-8	D-8	E-8	F-8	G-8	Н-8-

dRICH tile

dRICH tile 5.6 x 5.6 cm²

dRICH FEB (front-end board)

current thinking: 1 FEB serving 1 dRICH tiles

proto-readout-tile (Peltier cell?) cooling front-end ASIC

SiPM bus readout bus + LV bus

ALCOR 64 channels

- Vbias via ALCOR? (as CITIROC) or dRICH FEB with external LV connector + routing to dRICH tile (segmentation)
- readout bus to FPGA (dRICH ROB)
- potential area for dRICH FEB: 5x5 cm²
- ALCOR packaging (BGA) & test

all routing of signals from ALCOR to dRICH tile to be thought hard! TSV not an option due to cooling: FlexPCB?

dRICH ROB (read-out board)

- based on readout/throughput considerations 4 dRICH FEB (1024 ch) should be read-out by 1 dRICH ROB (4096 channels)
- ROB acts as concentrator + data reduction (BC timing) (factor 3-5: EIC 1 BC every 9.6 ns: just get a fraction (like 2 ns of window of interest or possibly less: potential spread is 150 ps but bunch length 0.3-0.4 ns!)
- ROB potential area 10x10 cm²

- This choice (see later) for throughput modelling keeps bandwidth on opt link to DAQ < 10 Gbps (current limitation)
- On each FEB-ROB bus expected throughput at 4 Gbps (at maximum damage from rad before annealing) if no veto on ALCOR is possible
- On each opt-link (after data reduction via timing): 5.9 Gbps (to be studied a further data reduction, if possible, via coincidences)

Throughput model

Key inputs:

- DCR: 300 Hz/mm^2 (Hama @ -40C)
- DCR sensor (9 mm²): 2.7 KHz
- maximum irradiation (10^11 1 MeV-neq) + annealing penalty: 100 (Calvi et al.)
- average max tolerable DCR sensor rate: 270 KHz (reached with some 10^9 MeV-neq... then you need to anneal!) ---> this gives already 1.8 Tbps from dRICH to DAQ (with data suppression - gated BC - by a factor 3)
- 317440 sensors

more than a factor 100 penalty in current just after 10⁹ 1-MeV-neq

(and indeed DCR seen growing at O(500) KHz after 10⁹ 1-MeV-neq)

ALCOR hit rate (with TOT) up to 1 MHz per single channel appears as a minimum requirement.

Throughput rates and ALCOR requirements (II)

- (average) ALCOR channel: 270 kHz \rightarrow 1 MHz
- 1 hit (including ToT)=64 bits
- 64 channels
- (with 1 MHz) → 2.0 Gbps/chip (current maximum)

Assuming average 270 kHz and TOT:

- 4.4 Gbps/FEB
- 18.6 Gbps/ROB ---> data reduction (BC) by a factor 3-5 (veto signal on ALCOR?)

Numerology:

- 4960 ALCOR (dRICH) + 75% (pfRICH)
- 1240 FEB (dRICH) + 75% (pfRICH)
- 310 ROB (dRICH) + 75% (pfRICH)
- O(10000) ALCOR [assuming 64 channels]

ALCOR & power consumptions & temperature

- Assumed 1.1 W/32 ch \rightarrow 35 mW ch
- FEB \rightarrow 8.9W
- ROB \rightarrow (1 FPGA, 1 opt. trans. (likely VTRx), drivers) \rightarrow 1A@3.3V
- dRICH total power: 12-15 KW
- moving to 64 channels will we gain something?
- Important for cooling design (aiming for -40/-50C for dRICH tile)
- operating temperature? (see dependency on temperature)
- max. temperature? (for annealing) (assuming FEB off during annealing on SiPM)

Operation with various SiPM

- nice if ALCOR works well with a large range of SiPM
 - o different manufacturers, micro-cell size and capacity
 - o for EIC we might eventually want to have ASIC optimised to chosen SiPM
 - but we do not know which SiPM is best to be used yet
 - best if ALCORv2 can function with large spectrum of SiPM
- SiPM-ASIC coupling
 - AC or DC
- analog part / amplification stage
 - gain should be sufficiently high
 - to work also with rad.tolerant SiPM with lower gain ~ 3 10⁵
 - discriminator capable of setting a low threshold with ease (not trivial with ALCORv1)
 - low noise from the amplifier, compatible with the smaller expected signals
 - noticed that when working at low T noise figure is much better
 - baseline oscillations if FE not properly configured
 - how can avoid that?
 - have handle to setup the chip at best without using oscilloscope
- digital part / is clock at 320 MHz a must? (likely the coarse counter LSB should be close to the window we want to gate data like 2 ns over 10 ns) → power?

Summary Wishlist (all with question marks)

- 1. V2 fix l'incriccamento + correzioni nel fine colonna (header non mandati quando si leggono status, cambiare interfaccia SPI)
- 2. [indip. tra V1/V2] 64 channels
 - to ease integration/reduce connections: si' con 2 ALCOR tra 32 in un BGA. R&D nel 2022
- 3. [V_{bias} via ALCOR] bassa priorita' non e' neanche chiaro se necessario
 - a) to help segmentation and fine tuning
- 4. V2 global signal (gate) to activate/inhibit input to discriminator
 - a) to reduce data rate, gating only the interesting window
- 5. OK se 1 viene realizzato: package fitting 5x5 cm² // 256 channels [vedi punto 2]
 - a) to fit space limitation on FEB
- 6. (non per V2) 1 MHz hit rate / channel \rightarrow probabilmente richiede passaggio da TAC a SAR per TDC
 - a) to cope with some margin with the SiPM DCR
- 7. V2 high gain & low-noise
 - a) possibly 20 dB gain over large bandwidth (~ 2 GHz)
 - b) single-photon detector of SiPM with low-gain (3 10⁵)
 - c) AC coupling on chip
- 8. T specs
 - a) to sustain annealing cycles on SiPM --< abswered
- \rightarrow dobbiamo capire se il ToT serve o meno
- → risoluzione temporale: binning a 50 ps (LSB) e' certamente ok, 100 ps dovrebbe ancora andare bene