Hadronization of heavy quark from pp to AA at TeV scale <u>Vincenzo Minissale</u>

Dipartimento di Fisica e Astronomia "Ettore Majorana" Università degli studi di Catania

INFN/LNS

In collaboration with: S. Plumari, V.Greco

TNPI2021 XVIII Conference on Theoretical Nuclear Physics in Italy

Outline

Hadronization:

- Fragmentation
- Coalescence model
- · SHM

Heavy hadrons in AA collisions:

• Λ_c , D spectra and ratio: RHIC and LHC

Heavy hadrons in small systems (pp @ 5.02 TeV):

- $\cdot \Lambda_c/D^0$
- \cdot Ξ_c/D^0 , Ω_c/D^0

Quark Gluon Plasma

 Nuclear matter: Critical Energy and Temperature in the transition between confined and deconfined phase

 $\epsilon_c \approx 0.7 \, GeV / fm^3$ $T_c \simeq 165 \, MeV \approx 10^{12} \, K$

- If T>T_c colour charges are deconfined in a Quark Gluon Plasma (QGP)
- Different value of T and ρ for deconfinement

→ Phase Diagram

Ultra-Relativistic Heavy-Ion Collisions

Initial Stage

Pre-equilibrium stage

Expansion

QGP

Hadronization

Chemical and kinetic freeze-out

Specific of Heavy Quarks

- $> m_{c,b} >> \Lambda_{\rm QCD}$ produced by pQCD process (out of equilibrium)
- $\label{eq:mcb} \begin{array}{l} & \mbox{${\rm m_{c,b}}$} >> \mbox{${\rm T}_0$} \\ & \mbox{negligible thermal production} \end{array}$
- > $\tau_0 << \tau_{QGP}$
- HQs experience the full QGP evolution
- Carry informations about initial stages, more than light quarks

Heavy flavour Hadronization

Microscopic

Fragmentation:

production from hard-scattering processes (PDF+pQCD). Fragmentation functions: data parametrization, assumed "universal"

$$\sigma_{pp \rightarrow h} = PDF(x_a, Q^2)PDF(x_b, Q^2) \otimes \sigma_{ab \rightarrow q\bar{q}} \otimes D_{q \rightarrow h}(z, Q^2)$$
Parton shower: String fragmentation(Lund model – PYTHIA)
+colour reconnection(interaction from different scattering)

Cluster decay (HERWIG)

Coalescence: recombination of partons in QGP close in phase space

$$\frac{dN_{Hadron}}{d^2 p_T} = g_H \int \prod_{i=1}^n p_i \cdot d\sigma_i \frac{d^3 p_i}{(2\pi)^3} f_q(x_i, p_i) f_W(x_1, \dots, x_n; p_1, \dots, p_n) \delta(p_T - \sum_i p_{iT})$$

Have described first AA observations in light sector for the enhanced baryon/ meson ratio and elliptic flow splitting

Statistical hadronization:

Equilibrium + hadron-resonance gas + freeze-out temperature. Production depends on hadron masses and degeneracy, and on system properties.

pQCD Charm production + total yield from charm cross section (not Temp.) charm hadrons according to thermal weights

hadrons d

7

Wigner function – Wave function

$$\Phi_M^W(\mathbf{r}, \mathbf{q}) = \int d^3 \mathbf{r}' e^{-i\mathbf{q}\cdot\mathbf{r}'} \phi_M(\mathbf{r} + \frac{\mathbf{r}'}{2}) \phi_M^*(\mathbf{r} - \frac{\mathbf{r}'}{2})$$

$$\phi_M(\mathbf{r}) \text{ meson wave function}$$

Assuming gaussian wave function

$$f_{H}(...) = \prod_{i=1}^{N_{q}-1} A_{W} \exp\left(-\frac{x_{ri}^{2}}{\sigma_{ri}^{2}} - p_{ri}^{2} \sigma_{ri}^{2}\right)$$

only one width coming from $\phi_{\rm M}({\bf r})$, constraint $\sigma_{\!_{r}} \sigma_{\!_{p}} = 1$

Wigner function **width** fixed by root-mean-square charge radius from **quark model**

C.-W. Hwang, EPJ C23, 585 (2002) C. Albertus et al., NPA 740, 333 (2004)

$$r^{2}\rangle_{ch} = \frac{3}{2} \frac{m_{2}^{2}Q_{1} + m_{1}^{2}Q_{2}}{(m_{1} + m_{2})^{2}} \sigma_{r1}^{2} + \frac{3}{2} \frac{m_{3}^{2}(Q_{1} + Q_{2}) + (m_{1} + m_{2})^{2}Q_{3}}{(m_{1} + m_{2} + m_{3})^{2}} \sigma_{r2}^{2}$$

$$\sigma_{ri} = 1/\sqrt{(\mu_i \,\omega)} \qquad \mu_1 = \frac{m_1 m_2}{m_1 + m_2} \qquad \mu_2 = \frac{(m_1 + m_2) m_3}{m_1 + m_2 + m_3}$$

Meson	$\langle r^2 \rangle_{ch}$	σ_{p1}	σ_{p2}
$D^+ = [c\bar{d}]$	0.184	0.282	
$D_s^+ = [\bar{s}c]$	0.083	0.404	
Damian	12	_	
Daryon	$\langle r^{-} \rangle_{ch}$	σ_{p1}	σ_{p2}
$\Delta_c^+ = [udc]$	$(r^{-})_{ch}$ 0.15	σ_{p1} 0.251	$\sigma_{p2}^{}$ 0.424
$\Delta_c^+ = [udc]$ $\Xi_c^+ = [usc]$	(<i>r⁻</i>) _{ch} 0.15 0.2	$\sigma_{p1} = 0.251 = 0.242$	$\sigma_{p2} \\ 0.424 \\ 0.406$

$$\Phi_M^W(\mathbf{r}, \mathbf{q}) = \int d^3 \mathbf{r}' \, e^{-i\mathbf{q}\cdot\mathbf{r}'} \phi_M(\mathbf{r} + \frac{\mathbf{r}'}{2}) \phi_M^*(\mathbf{r} - \frac{\mathbf{r}'}{2})$$

 $\phi_M(\mathbf{r})$ meson wave function

Assuming gaussian wave function

$$f_{H}(...) = \prod_{i=1}^{N_{q}-1} A_{W} \exp\left(-\frac{x_{ri}^{2}}{\sigma_{ri}^{2}} - p_{ri}^{2} \sigma_{ri}^{2}\right)$$

only one width coming from $\phi_{\rm M}({\bf r})$, constraint $\sigma_{\!_{r}} \sigma_{\!_{p}} = 1$

•Normalization of $f_H(...)$ requiring that $P_{coal}=1$ at p=0

•The charm that does not coalesce undergo fragmentation

Transport Boltzmann Equation

We use the Peterson fragmentation function

C. Peterson, D. Schalatter, I. Schmitt, P.M. Zerwas PRD 27 (1983) 105

$$D_{f \to h}(z) \propto \frac{1}{z \left[1 - \frac{1}{z} - \frac{\epsilon}{1 - z}\right]^2}$$

Sligthly modified to reproduce tail of the Λ_{c}/D^{0}

Charm Fragmentation Fraction (c->h) Measurement in $e^{\pm}p$, $e^{+}e^{-}$ and old pp data $\left(\frac{\Lambda_{c}^{+}}{D^{0}}\right)_{e^{+}e^{-}} \approx 0.1$ $\left(\frac{D_{s}^{+}}{D^{0}}\right)_{e^{+}e^{-}} \approx 0.13$

AA @ RHIC & LHC

wave function widths σ_p of baryon and mesons are the same at RHIC and LHC!

Coalescence lower at LHC than at RHIC → main contribution from Fragmentation

 D^0

S. Plumari, V. Minissale et al., Eur. Phys. J. C78 no. 4, (2018) 348

10

AA @ RHIC & LHC

wave function widths σ_p of baryon and mesons are the same at RHIC and LHC!

Data from ALICE Coll. JHEP 1209 (2012) 112

Coalescence lower at LHC than at RHIC \rightarrow main contribution from Coalescence

AA @ RHIC & LHC

wave function widths σ_p of baryon and mesons are the same at RHIC and LHC!

Data from ALICE Coll. JHEP 1209 (2012) 112

RHIC.

S. Plumari, V. Minissale et al., Eur. Phys. J. C78 no. 4, (2018) 348

Heavy flavour Hadronization

Heavy flavour Hadronization

hadrons

12

Fragmentation: production from hard-scattering processes (PDF+pQCD).

Fragmentation functions: data parametrization, assumed "universal"

$$\sigma_{pp \rightarrow h} = PDF(x_a, Q^2) PDF(x_b, Q^2) \otimes \sigma_{aa \rightarrow q\bar{q}} \otimes D_{q \rightarrow h}(z, Q^2)$$

Things get more complicated after experimental evidence in pp@5TeV:

Fragmentation fractions $(c \rightarrow h)$ depends on <u>collision system</u>...*and QGP presence*?

No more Universality?

Baryon/meson ratio is underestimated, and no p_{T} dependence

Common consensus of possible presence of **QGP** in smaller system.

If we assume in p+p @ 5 TeV a medium similar to the one simulated in hydro:

What if:

V. Minissale, S. Plumari, V. Greco, Physics Letters B 821 (2021) 136622

The <u>increase</u> of Λ_c production in pp has big effect on R_{AA} of $\Lambda_c \rightarrow$ coal.+fragm. has different behaviour especially at low momenta.

Reduction of rise-and-fall behaviour in Λ_c / D^o ratio:

-Confronting with AA: Coal. contribution smaller w.r.t. Fragm.

-FONLL distribution flatter w/o evolution trough QGP -Volume size effect

V. Minissale, S. Plumari, V. Greco, Physics Letters B 821 (2021) 136622

Other models

PYTHIA8+Colour Reconnection *JHEP 1508 (2015) 003:* including "interactions" among partons from different partonic scatterings

Statistical Hadronization Model with augmented set of baryonic states respect PDG [He,Rapp, PLB 795 117-121 (2019)]

Reduction of rise-and-fall behaviour in Λ_c / D⁰ ratio:

-Confronting with AA: Coal. contribution smaller w.r.t. Fragm.

-FONLL distribution flatter w/o evolution trough QGP -Volume size effect

uncertainty in guark model

New measurements of heavy hadrons at ALICE:

- Ξ_c/D^0 ratio, same order of Λ_c/D^0 : coalescence gives enhancement
- very large $\Omega_{_{C}}/D^{\scriptscriptstyle 0}$ ratio, our model does not get the big enhancement

ALICE Collaboration, JHEP 10 (2021) 159 V. Minissale, S. Plumari, V. Greco, Physics Letters B 821 (2021) 136622

Conclusions

- Good agreement with experimental data of hadrons spectra in AA collisions from RHIC to LHC
- Extension to pp: description of D mesons and Λ_{c} spectra
- Coalescence plus fragmentation gives peculiar enhancement in

baryon/ meson ratio for all heavy hadrons $\Lambda_c, \Xi_c, \Omega_c$

Outlook: multicharm hadrons production

٠

•

٠

٠

Backup Slides

Hadronization: Coalescence

Heavy flavour: Resonance decay

Meson	Mass(MeV)	l (J)	Decay modes	B.R.
$D^+ = \bar{d}c$	1869	$\frac{1}{2}(0)$		
$D^0 = \bar{u}c$	1865	$\frac{1}{2}(0)$		
$D_s^+ = \bar{s}c$	2011	Ô(0)		
Resonances				
D^{*+}	2010	$\frac{1}{2}(1)$	$D^0\pi^+; \ D^+X$	68%,32%
D^{*0}	2007	$\frac{1}{2}(1)$	$D^0\pi^0;~D^0\gamma$	62%,38%
D_s^{*+}	2112	Ô(1)	D_s^+X	100%
Baryon				
$\Lambda_c^+ = udc$	2286	$0(\frac{1}{2})$		
$\Xi_c^+ = usc$	2467	$\frac{1}{2}\left(\frac{\tilde{1}}{2}\right)$		
$\Xi_c^0 = dsc$	2470	$\frac{1}{2}\left(\frac{1}{2}\right)$		
$\Omega_c^0 = ssc$	2695	$\tilde{0}(\frac{f}{2})$		
Resonances		_		
Λ_c^+	2595	$0(\frac{1}{2})$	$\Lambda_c^+\pi^+\pi^-$	100%
Λ_c^+	2625	$0(\frac{3}{2})$	$\Lambda_c^+\pi^+\pi^-$	100%
Σ_c^+	2455	$1\left(\frac{\tilde{1}}{2}\right)$	$\Lambda_c^+ \pi$	100%
Σ_c^+	2520	$1(\frac{3}{2})$	$\Lambda_c^+ \pi$	100%
$\Xi_{c}^{'+,0}$	2578	$\frac{1}{2}(\frac{1}{2})$	$\Xi_c^{+,0}\gamma$	100%
Ξ_c^+	2645	$\frac{\tilde{1}}{2}\left(\frac{\tilde{3}}{2}\right)$	$\Xi_{c}^{+}\pi^{-}$,	100%
Ξ_{c}^{+}	2790	$\frac{1}{2}\left(\frac{1}{2}\right)$	$\Xi_c^{}\pi$,	100%
Ξ_c^+	2815	$\frac{1}{2}(\frac{3}{2})$	$\Xi_c^{}\pi$,	100%
Ω_c^0	2770	$\hat{0}(\frac{3}{2})$	$\Omega_c^0 \gamma$,	100%

In our calculations we take into account hadronic channels including the ground states + first excited states

Statistical factor suppression for resonances

$$\frac{[(2J+1)(2I+1)]_{H^*}}{[(2J+1)(2I+1)]_H} \left(\frac{m_{H^*}}{m_H}\right)^{3/2} e^{-(m_{H^*}-m_H)/T}$$

RHIC: results

RHIC: Baryon/meson

STAR, Phys.Rev.Lett. 124 (2020) 17, 172301

Compared to light baryon/meson ratio the Λ_c/D^0 ratio has a larger width (flatter)

More flatter → should coalescence extend to higher pt? Indication also in light sector

V. Minissale, F. Scardina, V. Greco **PRC 92**,054904 (2015) Cho, Sun, Ko et al.,**PRC 101 (2020)** 2, 024909

Needed data at low p_T

S. Plumari, V. Minissale et al., Eur. Phys. J. C78 no. 4, (2018) 348

Elliptic Flow – Quark Number Scaling

coalescence brings to

Partonic elliptic flow

Hadronic elliptic flow

Assumption

- one dimensional
- Dirac delta for Wigner function
- isotropic radial flow
- not including resonance effect

Baryon to meson ratio at RHIC

- coalescence naturally predict a baryon/meson enhancement in the region $p_T \approx 2-4GeV$ with respect to pp collisions
- Lack of baryon yield in the region $p_T \simeq 5-7$ GeV

Relativistic Boltzmann transport at finite η/s

Bulk evolution

<u>Heavy quark evolution</u> $p^{\mu}\partial_{\mu}f_Q(x,p)=C[f_q,f_g,f_Q]$

•Describes the evolution of the one body distribution function f(x,p)

It is valid to study the evolution of both bulk and Heavy quarks

•Possible to include f(x,p) out of equilibrium

29

S. Plumari et al., J. Phys. Conf. Ser. 981 012017 (2018).