NINPHA Theoretical activities on QCD and hadronic structure

ECT* EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

XVIII Conference on Theoretical Nuclear Physics in Italy TNPI2021, November 23rd

Francesco Giovanni Celiberto ECT*/FBK Trento & INFN-TIFPA

Trento Institute for **Fundamental Physics** and Applications

HAS QCD HADRONIC STRUCTURE AND

QUANTUM CHROMODYNAMICS

NINPHA and the hadron structure

The main goals of NINPHA

QCD confinement \leftrightarrow **detailed map** of *nonlinear* dynamics of partons inside hadrons

- Internal structure of hadrons \rightarrow parton distributions in **3D** mom. and coord. space
- Innovative way to look at the **nucleon** \rightarrow revealing properties otherwise inaccessible
- Original methodology \rightarrow addressing mass, spin and orbital angular momentum quests

The proton spin crisis

1.0 NINPHA and the hadronic structure slide adapted from C. Bissolotti

Total spin carried by quarks and gluons does not amount to 1/2, one needs orbital angular momentum, then a 3D description...

The proton spin crisis

1.0 NINPHA and the hadronic structure

Total spin carried by quarks and gluons does not amount to 1/2, one needs orbital angular momentum, then a 3D description...

slide adapted from C. Bissolotti

The proton spin crisis

1.0 NINPHA and the hadronic structure

...many other effects in hadronic interactions cannot be understood in the purely collinear approach

Total spin carried by quarks and gluons does not amount to 1/2, one needs orbital angular momentum, then a 3D description...

slide adapted from C. Bissolotti

Parton densities: an incomplete family tree

1.0 NINPHA and the hadronic structure

NINPHA experimental connections

- Alice, CMS, Atlas, LHCb LHC CERN Geneva (Switzerland)
- COMPASS CERN Geneva (Switzerland)
- HERMES DESY Hamburg (Germany)
- MAMBO (Mainz-Bonn)
- VINCEN INFN-LNS
- CLAS, Hall A, Hall B, Hall C Jefferson Laboratories (JLab) (VA) USA
- STAR, Phenix Brookhaven National Laboratories (BNL) (NY) USA
- CDF, DØ- Tevatron Fermi National Accelerator Laboratory (IL) USA
- BaBar SLAC National Accelerator Laboratory (CA) USA
- BELLE KEK Tokio Japan
- BESIII Beijing China
- VICA-SPD JINR Dubna Russia
- was published earlier this year.

1.1 NINPHA and experiments

BEST

NINPHA activities are connected the following international experimental collaborations:

 \sim In the last two years NINPHA has been deeply involved in the planning and design work of a brand new, dedicated facility, the **Electron Ion Collider** (EIC). All members have co-authored the EIC Yellow Report, which

slide adapted from M. Boglione, NuPECC

The EIC Yellow Report

"The Yellow Report represents a year-long superb effort of the EIC community. This community spans the world, with crucial contributions coming from many scientists in many countries, underscoring that we all work together as one community toward shared science goals."

Ifrom the BNL website

1.1 NINPHA and experiments

SCIENCE REQUIREMENTS AND DETECTOR **CONCEPTS FOR THE ELECTRON-ION COLLIDER**

EIC Yellow Report

The EIC Yellow Report

"The Yellow Report represents a year-long superb effort of the EIC community. This community spans the world, with crucial contributions coming from many scientists in many countries, underscoring that we all work together as one community toward shared science goals."

Ifrom the BNL website

1.1 NINPHA and experiments

SCIENCE REQUIREMENTS AND DETECTOR **CONCEPTS FOR THE ELECTRON-ION COLLIDER**

EIC Yellow Report

[EICUG [arXiv:2103.05419]]

NINPHA activities at Local Units

INFN Unit: Cagliari

Staff members

Umberto D'Alesio, U. Cagliari, Associate Professor, <u>CSN4 Local Coordinator</u> Francesco Murgia, INFN, First Researcher Cristian Pisano, U. Cagliari, Associate Professor Giuseppe Bozzi, U. Cagliari, Researcher

2.1 NINPHA activities *@***Cagliari**

INFN Unit: Cagliari

Umberto D'Alesio, U. Cagliari, Associate Professor, <u>CSN4 Local Coordinator</u> Francesco Murgia, INFN, First Researcher Cristian Pisano, U. Cagliari, Associate Professor Giuseppe Bozzi, U. Cagliari, Researcher

Other Participants

Luca Maxia, U. Cagliari, PhD Student Marco Zaccheddu, U. Cagliari, PhD Student Carlo Flore, IJCLab (Paris), Post-doc, External Collaborator

2.1 NINPHA activities @Cagliari

Quark Sivers and J/Ψ production in SIDIS

Reweighting of quark Sivers with jet at *pp* STAR * NINPHA/Cagliari + NINPHA/Torino + JLab STAR data to costrain quark Sivers at large-x

[M. Boglione *et al.* (2021)]

2.1 NINPHA activities (*a*)**Cagliari**

Quark Sivers and J/Ψ production in SIDIS

Reweighting of quark Sivers with jet at *pp* STAR NLO large- $p_T J/\Psi$ in SIDIS at HERA and EIC * * NINPHA/Cagliari + NINPHA/Torino + JLab © [C. Flore *et. al.* (2020)] STAR data to costrain quark Sivers at large-x

M. Boglione *et al.* (2021)

2.1 NINPHA activities (a) Cagliari

* J/Ψ in SIDIS: matching low and high p_T [D. Boer et al. (2020)]

Extracting SIDIS J/Ψ NRQCD-CO at the EIC * [D. Boer, C. Pisano, P. Taels (2021)]

 J/Ψ pol., gluon TMDs and shape functions

TMD FFs in e^+e^- annihilations

First extraction of Λ polarizing TMD FF *

FIG. 2. Best-fit estimates of the transverse polarisation for Λ and $\bar{\Lambda}$ production in $e^+e^- \to \Lambda(\bar{\Lambda})h + X$, for $\Lambda \pi^{\pm}$ (a), $\bar{\Lambda} \pi^{\pm}$ (b), ΛK^{\pm} (c), $\bar{\Lambda} K^{\pm}$ (d), as a function of z_h (of the associated hadron) for different z_{Λ} bins. Data are from Belle [11]. The statistical uncertainty bands, at 2σ level, are also shown. Notice that data for $z_{\pi,K} > 0.5$ are not included in the fit.

2.1 NINPHA activities (a) Cagliari

$e^+e^- \rightarrow \text{TMD}$ factorization proven

Puzzle: spontaneous transverse polarization

FIG. 1. Best-fit estimates of the transverse polarisation for inclusive Λ and $\overline{\Lambda}$ production in $e^+e^- \to \Lambda(\text{jet}) + X$ (thrustplane frame) as a function of p_{\perp} for different z_{Λ} bins (energy fractions), compared against Belle data [11]. The statistical uncertainty bands, at 2σ level, are also shown. Notice that curves for Λ and $\overline{\Lambda}$ coincide and that data in the rightmost panel are not included in the fit.

[U. D'Alesio, F. Murgia, M. Zaccheddu (2020)]

TMD FFs in e^+e^- annihilations

First extraction of Λ polarizing TMD FF *

FIG. 2. Best-fit estimates of the transverse polarisation for Λ and $\bar{\Lambda}$ production in $e^+e^- \to \Lambda(\bar{\Lambda})h + X$, for $\Lambda \pi^{\pm}$ (a), $\bar{\Lambda} \pi^{\pm}$ (b), ΛK^{\pm} (c), $\bar{\Lambda} K^{\pm}$ (d), as a function of z_h (of the associated hadron) for different z_{Λ} bins. Data are from Belle [11]. The statistical uncertainty bands, at 2σ level, are also shown. Notice that data for $z_{\pi,K} > 0.5$ are not included in the fit.

2.1 NINPHA activities *a***Cagliari**

$e^+e^- \rightarrow \text{TMD}$ factorization proven

Puzzle: spontaneous transverse polarization

FIG. 1. Best-fit estimates of the transverse polarisation for inclusive Λ and $\overline{\Lambda}$ production in $e^+e^- \to \Lambda(\text{jet}) + X$ (thrustplane frame) as a function of p_{\perp} for different z_{Λ} bins (energy fractions), compared against Belle data [11]. The statistical uncertainty bands, at 2σ level, are also shown. Notice that curves for Λ and $\overline{\Lambda}$ coincide and that data in the rightmost panel are not included in the fit.

[U. D'Alesio, F. Murgia, M. Zaccheddu (2020)]

TMD FFs via the helicity formalism

$$e^+e^- \to h_1h_2 + X$$

[U. D'Alesio, F. Murgia, M. Zaccheddu (2021)]

Gluon Sivers effect in quarkonium production

*

$$p^{\uparrow}p \to J/\psi + X$$

$$A_N \equiv \frac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}} \equiv \frac{\mathrm{d}\Delta\sigma}{2\mathrm{d}\sigma}$$

- CGI-GPM ⊗ NRQCD-CO Gauge link $\Rightarrow f_{1T}^{\perp(f)} \gg f_{1T}^{\perp(d)}$
- © [U. D'Alesio *et al.* (2020)]

2.1 NINPHA activities (a) Cagliari

Gluon distribution via onium production, pp and semi-inclusive DIS (SIDIS) \leftarrow TMD \otimes NRQCD

Gluon Sivers effect in quarkonium production

*

$$p^{\uparrow}p \to J/\psi + X$$

$$A_N \equiv \frac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}} \equiv \frac{\mathrm{d}\Delta\sigma}{2\mathrm{d}\sigma}$$

CGI-GPM ⊗ NRQCD-CO Gauge link $\Rightarrow f_{1T}^{\perp(f)} \gg f_{1T}^{\perp(d)}$

Gluon Sivers \gg quark Sivers Role of **EIC** \rightarrow gluon Sivers © [S. Rajesh *et al.* (2021)]

2.1 NINPHA activities (a) Cagliari

Gluon distribution via onium production, pp and semi-inclusive DIS (SIDIS) \leftarrow TMD \otimes NRQCD

Elena Santopinto, INFN, First Researcher

Paolo Saracco, INFN, Researcher

2.2 NINPHA activities @Genova

Elena Santopinto, INFN, First Researcher

Paolo Saracco, INFN, Researcher

Other Participants

Ruslan Magaña Vsevolodovna, U. Genova, Post-doc

Many external collaborators:

Europe, China, Japan, USA and Latin America

2.2 NINPHA activities @Genova

- * Systematic study of **heavy-hadron spectroscopy**
- **★** Tetraquarks/Pentaquarks/Hybrids → Exotics
- * **Prediction** before *detection* (LHCb) of new Ω_b states

2.2 NINPHA activities @Genova

- * Systematic study of **heavy-hadron spectroscopy**
- **Tetraquarks/Pentaquarks/Hybrids** → *Exotics* *
- **Prediction** before *detection* (LHCb) of new Ω_b states *

2.2 NINPHA activities (a)Genova

- * NINPHA/Genova + NINPHA/Perugia
- * Relativistic description of 3-body bound systems
- *** Tools** for GPD/TMD modeling at the **EIC**

- * Systematic study of **heavy-hadron spectroscopy**
- **Tetraquarks/Pentaquarks/Hybrids** → *Exotics* *
- **Prediction** before *detection* (LHCb) of new Ω_b states *

2.2 NINPHA activities (a)Genova

- * NINPHA/Genova + NINPHA/Perugia
- * Relativistic description of 3-body bound systems
- *** Tools** for GPD/TMD modeling at the **EIC**
- * Interdisciplinary connections
- Exotic hadrons as *candidates* for **dark matter**
- ***** Exotic matter inside **neutron stars**

- * Systematic study of **heavy-hadron spectroscopy**
- **Tetraquarks/Pentaquarks/Hybrids** → *Exotics* *
- **Prediction** before *detection* (LHCb) of new Ω_h states *
 - Compact pentaguarks structures * [E. Santopinto, A. Giachino (2017)]

FIG. 3: octet of the charmonium pentaquark states: each state is labelled with $P^{ij}(M)$, where i = 0, 1, 2 is the number of strange quarks of a given pentaquark state, j = -, 0, + is the pentaquark's electric charge, and M the predicted mass.

2.2 NINPHA activities @Genova

- * NINPHA/Genova + NINPHA/Perugia
- Relativistic description of 3-body bound systems *
- *** Tools** for GPD/TMD modeling at the **EIC**
- **Interdisciplinary** connections *
- Exotic hadrons as *candidates* for **dark matter**
- Exotic matter inside **neutron stars**

* $cc\bar{c}\bar{c}$ TQ decays in 4μ or $D^{(*)}\bar{D}^{(*)}$ at the LHC \mathscr{O} [C. Becchi *et al.* (2020)]

Triply-heavy TQs, relativized quark model
Q.-F.. Lü *et al.* (2021)]

2.2 NINPHA activities @Genova

* Hidden-c PQs, chiral tensor, quark dynamics

Staff members

Alessandro Bacchetta, U. Pavia, Full Professor Barbara Pasquini, U. Pavia, Associate Professor Marco Radici, INFN, First Researcher

2.3 NINPHA activities @Pavia

INFN Unit: Pavia

Staff members

Alessandro Bacchetta, U. Pavia, Full Professor Barbara Pasquini, U. Pavia, Associate Professor Marco Radici, INFN, First Researcher

Other Participants

Francesco Giovanni Celiberto, ECT*/FBK Trento, Researcher Andrea Signori, JLab & U. Pavia, Marie Curie Global Post-doc Matteo Cerutti, Simone Venturini, Lorenzo Rossi, U. Pavia, PhD Students Many former PhD students, now post-docs:

Argonne, JLab, Regensburg

2.3 NINPHA activities @Pavia

INFN Unit: Pavia

3D proton tomography: unpolarized quark studies

Global extraction of f_1 [DY+SIDIS] *

 \mathcal{O} [A. Bacchetta *et al.* (2017)]

$$\chi^2/N_{\rm dat} = 1.55$$

8059 points with normalization coefficients

2.3 NINPHA activities @Pavia

slide adapted from C. Bissolotti

3D proton tomography: unpolarized quark studies

Global extraction of f_1 [DY+SIDIS] * N³LL extraction of f_1 [DY] *

$$\chi^2/N_{\rm dat} = 1.55$$

with normalization coefficients

8059 points

2.3 NINPHA activities @Pavia

[A. Bacchetta *et al.* (2020)]

$$2/N_{\rm dat} = 1.02$$

- 353 points
- w/o *ad hoc* normalization
- slide adapted from C. Bissolotti

3D proton tomography: unpolarized quark studies

Global extraction of f_1 [DY+SIDIS] [A. Bacchetta *et al.* (2017)]

$$\chi^2/N_{\rm dat} = 1.55$$

with normalization coefficients

8059 points

NINPHA activities *(a)***Pavia** 2.3

* N³LL extraction of f_1 [DY]

[A. Bacchetta *et al.* (2020)]

 $\chi^2 / N_{\rm dat} = 1.02$

- 353 points
- w/o ad hoc normalization
- slide adapted from C. Bissolotti

*

3D proton tomography: quark polarization studies

NLL Sivers effect from SIDIS *

2.3 NINPHA activities @Pavia

3D proton tomography: quark polarization studies

NLL Sivers effect from SIDIS *

2.3 NINPHA activities @Pavia

EIC: transversity PDF + tensor charge *

Solution [EIC Yellow Report (2021)]

3D proton tomography via TMD gluon distributions

- **Spectator model** approach + spectral-mass function *
- Calculation of twist-2 *T***-even** gluon TMDs done * [A. Bacchetta, F.G.C., M. Radici, P. Taels (2020)]

3D proton tomography via TMD gluon distributions

- **Spectator model** approach + spectral-mass function *
- Calculation of twist-2 *T***-even** gluon TMDs done * [A. Bacchetta, F.G.C., M. Radici, P. Taels (2020)]
- **Intrinsic** gluon polarization in unpol. *pp* collisions *

3D proton tomography via TMD gluon distributions

- **Spectator model** approach + spectral-mass function
- Calculation of twist-2 *T***-even** gluon TMDs done * [A. Bacchetta, F.G.C., M. Radici, P. Taels (2020)]
- **Intrinsic** gluon polarization in unpol. *pp* collisions *

- Twist-2 *T***-odd** gluon TMDs almost ready! *
- Gluon **Sivers** effect via **heavy flavor** at the **EIC** * NINPHA/**Pavia** + NINPHA/**Cagliari**

2.3 NINPHA activities @Pavia

GPD-TMD lensing, Pion Drell-Yan, Wigner, jets

GPD-(*T*-odd TMD) lensing function in SIDIS *

[B. Pasquini, S. Rodini, A. Bacchetta (2019)]

- Properties of the EMT, $T^{\mu\nu}$ * 1-loop QED: *e*⁻ gravitation form factor 3-loop QCD: mass decomp., Tr anom., σ term [A. Metz, B. Pasquini, S. Rodini (2021)] [C. Lorcé, A. Metz, B. Pasquini, S. Rodini (2021)]
- *P* generalized polarizabilities from **JLab12** VCS * [B. Pasquini, M. Vanderhaegen (2021)]

2.3 NINPHA activities @Pavia

GPD-TMD lensing, Pion Drell-Yan, Wigner, jets

GPD-(*T*-odd TMD) lensing function in SIDIS *

[B. Pasquini, S. Rodini, A. Bacchetta (2019)]

- Properties of the EMT, $T^{\mu\nu}$ 1-loop QED: *e*⁻ gravitation form factor 3-loop QCD: mass decomp., Tr anom., σ term [A. Metz, B. Pasquini, S. Rodini (2021)] [C. Lorcé, A. Metz, B. Pasquini, S. Rodini (2021)]
- Inclusive jets, hadrons in jets *P* generalized polarizabilities from **JLab12** VCS * [B. Pasquini, M. Vanderhaegen (2021)] [A. Accardi, A. Signori (2020)] [HASQCD Pavia, in progress]

2.3 NINPHA activities @Pavia

Modeling pions and nucleons TMDs in DY *

S. Bastmi, ..., B. Pasquini, et. al. (2021)

Polarized quark Wigner distributions [B. Pasquini, C. Lorcé (2021)]

INFN Unit: Perugia

Staff members

Massimiliano Alvioli, CNR, Researcher Simone Pacetti, U. Perugia, Associate Professor Matteo Rinaldi, U. Perugia, Researcher Sergio Scopetta, U. Perugia, Associate Professor

2.4 NINPHA activities @Perugia

INFN Unit: Perugia

Staff members

Massimiliano Alvioli, CNR, Researcher Simone Pacetti, U. Perugia, Associate Professor Matteo Rinaldi, U. Perugia, Researcher Sergio Scopetta, U. Perugia, Associate Professor

Other Participants

Alessio Mangoni, INFN, Post-doc

Rajesh Sangem, INFN, Post-doc

Giovanni Salmè, INFN-Roma, First Researcher (Senior)

2.4 NINPHA activities @Perugia

Multi-particle interactions, diquark correlations

*

HAS via **multi-particle interactions** (**MPIs**), link to light-front wave functions (LFWFs) **Double PDFs** (**dPDFs**) carry information on transverse distance of partons; dPDFs \Leftrightarrow GPDs (?)

Hadronic structure and New Physics \leftarrow JLab12, BESIII, HL-LHC, EIC

2.4 NINPHA activities @Perugia

[M. Rinaldi, S. Scopetta, M.C. Traini, V. Vento (2016)] [M. Rinaldi, S. Scopetta, M.C. Traini, V. Vento (2018)]

Multi-particle interactions, diquark correlations

HAS via **multi-particle interactions** (**MPIs**), link to light-front wave functions (LFWFs) * Hadronic structure and New Physics \leftarrow JLab12, BESIII, HL-LHC, EIC

Figure 1. The digluon distribution $\tilde{F}_{qq}(x_1 = 10^{-4}, x_2 = 10^{-2}, b_\perp, Q^2 = m_H^2)$. Left panel: calculation within the HO model. Right panel: calculation within the HP model. Partonic distance expressed in $[\text{GeV}^{-1}]$.

(in this slide, LHC double parton scattering) \mathscr{O} [M. Rinaldi, F. Ceccopieri (2019)] (photon-induced double parton scattering) \mathscr{O} [F. Ceccopieri, M. Rinaldi (2021)]

2.4 NINPHA activities *a***Perugia**

Double PDFs (**dPDFs**) carry information on transverse distance of partons; dPDFs \Leftrightarrow GPDs (?)

[M. Rinaldi, S. Scopetta, M.C. Traini, V. Vento (2016)] [M. Rinaldi, S. Scopetta, M.C. Traini, V. Vento (2018)]

Multi-particle interactions, diquark correlations

HAS via **multi-particle interactions** (**MPIs**), link to light-front wave functions (LFWFs) * Hadronic structure and New Physics \leftarrow JLab12, BESIII, HL-LHC, EIC

Figure 1. The digluon distribution $\tilde{F}_{qq}(x_1 = 10^{-4}, x_2 = 10^{-2}, b_{\perp}, Q^2 = m_H^2)$. Left panel: calculation within the HO model. Right panel: calculation within the HP model. Partonic distance expressed in $[\text{GeV}^{-1}]$.

(in this slide, LHC double parton scattering) & M. Rinaldi, F. Ceccopieri (2019)](photon-induced double parton scattering) \mathscr{O} [F. Ceccopieri, M. Rinaldi (2021)]

2.4 NINPHA activities *a***Perugia**

Double PDFs (**dPDFs**) carry information on transverse distance of partons; dPDFs \Leftrightarrow GPDs (?)

[M. Rinaldi, S. Scopetta, M.C. Traini, V. Vento (2016)] [M. Rinaldi, S. Scopetta, M.C. Traini, V. Vento (2018)]

* Review: NINPHA/Perugia + NINPHA/Genova Diquark correlations \Leftrightarrow exotics, PDFs

DVCS, GPDs, nuclear collisions, baryons

* ³⁽⁴⁾He DVCS and GPDs at JLab12 and EIC

S. Fucini, M. Rinaldi, S. Scopetta (2018)]
[S. Fucini, S. Scopetta, M. Viviani (2020)]
[S. Fucini, M. Hattawy, M. Rinaldi, S. Scopetta (2021)]

2.4 NINPHA activities @Perugia

DVCS, GPDs, nuclear collisions, baryons

³⁽⁴⁾He DVCS and GPDs at JLab12 and EIC

S. Fucini, M. Rinaldi, S. Scopetta (2018)] S. Fucini, S. Scopetta, M. Viviani (2020) S. Fucini, M. Hattawy, M. Rinaldi, S. Scopetta (2021)

2.4 NINPHA activities *a***Perugia**

- Color fluctuations in pN and D^+N , RHIC and LHC * [M. Alvioli, L. Frankfurt, D. Perepelitsa, M. Strikman (2018)]
- Neutron-skin effect at RHIC nuclear collisions * \mathcal{O} [J. Hammelmann, ..., M. Alvioli *et al.* (2020)]

- Amplitude separation in $\Psi(2S) \rightarrow$ baryons * [R. Ferroli, A. Mangoni, S. Pacetti, K. Zhu (2021)]
- * Electromagnetic structure of the neutron \mathscr{O} [BESIII Collaboration (2021)]

Staff members

Vincenzo Barone, U. Piemonte Orientale, Associate Professor Mariaelena Boglione, U. Torino, Associate Professor, <u>NINPHA Coordinator</u> José Osvaldo Gonzalez-Hernandez, U. Torino, Researcher

2.5 NINPHA activities @Torino

INFN Unit: Torino

Staff members

Vincenzo Barone, U. Piemonte Orientale, Associate Professor Mariaelena Boglione, U. Torino, Associate Professor, <u>NINPHA Coordinator</u> José Osvaldo Gonzalez-Hernandez, U. Torino, Researcher

Other Participants

Mauro Anselmino, U. Torino, Full Professor (Senior) Andrea Simonelli, INFN, Post-doc

2.5 NINPHA activities @Torino

INFN Unit: Torino

Mapping kinematic regimes of SIDIS

* SIDIS production and TMD factorization

[M. Boglione et al. (2019)]

2.5 NINPHA activities @Torino

Figure 10: Collinearity (R_1 from Eq. (8.15) for fixed $z_h = 0.25$, $\zeta = 0.3$ and $\xi = 0.2$. Top panels show the ratio for $M_B = m_{\pi}$ at (a) small transverse momentum ($q_T = 0.3$ GeV) and (b) $q_T = 2.0$ GeV. Similar cases for $M_B = m_K$ are shown in the bottom panels, (c) and (d).

Collinearity. Similar plots for transverse-hardness and spectator-virtuality ratios

Jets and TMD FFs in e^+e^- annihilations

- ***** TMD factorization, benchmark processes:
 - 1. Drell-Yan, l^+l^- almost back-to-back
 - 2. SIDIS, small p_T
 - 3. $e^+e^- \rightarrow H_1 + H_2 + X$, almost back-to-back

Same structure for the cross section:

Factorization definition for F and D

2.5 NINPHA activities @Torino

Jets and TMD FFs in e^+e^- annihilations

- ***** TMD factorization, benchmark processes:
 - 1. Drell-Yan, l^+l^- almost back-to-back
 - 2. SIDIS, small p_T
 - 3. $e^+e^- \rightarrow H_1 + H_2 + X$, almost back-to-back

Same structure for the cross section:

Factorization definition for F and D

slide adapted from A. Simonelli, Sar Wors 2021

2.5 NINPHA activities @Torino

★ Beyond benchmark: $e^+e^- \rightarrow H + X$ Sensitivity to **thrust**, rapidity cut-offs

(Universality breaking) \mathscr{O} [M. Boglione, A. Simonelli (2020)] (Factorization, 2-jet limit) \mathscr{O} [M. Boglione, A. Simonelli (2021)] (Factorization, kinematics) \mathscr{O} [M. Boglione, A. Simonelli (2021)]

Sivers and Collins functions, SIDIS at large p_T

Unpol. TMD PDFs/FFs and SSAs *

[M. Anselmino *et al.* (2018)]

TMD signals of the quark Sivers effect * NINPHA/**Torino** + NINPHA/**Cagliari** Extraction from HERMES/JLab/COMPASS

FIG. 8: Uncertainties on the first moments of the Sivers distribution for $u = u_v + \bar{u}$ (left panel) and $d = d_v + \bar{d}$ (right panel). The shaded bands correspond to our estimate of 2σ C.L. error for α -fit case. In both panels, the gray bands correspond to the fit which includes the new COMPASS-2017 data [9] for h^+ and h^- production off NH₃ target, while the meshed areas correspond to the uncertainties obtained when the COMPASS-2015 data from the older analysis [33] are included. The lower panels show the relative errors, given by the ratio between the upper/lower border of the uncertainty bands and the best-fit curve for the reference fit.

M. Boglione *et al.* (2018)]

2.5 NINPHA activities *@***Torino**

Sivers and Collins functions, SIDIS at large p_T

Unpol. TMD PDFs/FFs and SSAs *

[M. Anselmino *et al.* (2018)]

TMD signals of the quark Sivers effect * NINPHA/**Torino** + NINPHA/**Cagliari** Extraction from HERMES/JLab/COMPASS

FIG. 8: Uncertainties on the first moments of the Sivers distribution for $u = u_v + \bar{u}$ (left panel) and $d = d_v + \bar{d}$ (right panel). The shaded bands correspond to our estimate of 2σ C.L. error for α -fit case. In both panels, the gray bands correspond to the fit which includes the new COMPASS-2017 data [9] for h^+ and h^- production off NH₃ target, while the meshed areas correspond to the uncertainties obtained when the COMPASS-2015 data from the older analysis [33] are included. The lower panels show the relative errors, given by the ratio between the upper/lower border of the uncertainty bands and the best-fit curve for the reference fit.

M. Boglione *et al.* (2018)]

2.5 NINPHA activities @Torino

* Large p_T behavior in SIDIS NINPHA/**Torino** + JLab + Zhejiang (China)

FIG. 4. Calculation of $O(\alpha_s)$ and $O(\alpha_s^2)$ transversely differential multiplicity using code from [24], shown as the curves labeled DDS (for Daleo-de Florian-Sassot). The bar at the bottom marks the region where $q_T > Q$. The PDF set used is CJNLO [31] and the FFs are from [32]. Scale dependence is estimated using $\mu = ((\zeta_Q Q)^2 + (\zeta_{q_T} q_T)^2)^{1/2}$ where the band is constructed point-by-point in q_T by taking the min and max of the cross section evaluated across the grid $\zeta_Q \times \zeta_{q_T} = [1/2, 1, 3/2, 2] \times [0, 1/2, 1, 3/2, 2]$ except $\zeta_Q = \zeta_{q_T} = 0$. The red band is generated with $\zeta_Q = 1$ and $\zeta_{q_T} = 0$. A lower bound of 1 GeV is place on μ when Q/2would be less than 1 GeV.

[J.O. Gonzalez-Hernanded *et al.* (2018)]

Future perspectives

EIC Yellow Report Ø [EICUG [arXiv:2103.05419]]

Accessing the proton content

3.0 Future perspectives

EIC Yellow Report Ø [EICUG [arXiv:2103.05419]]

Accessing the proton content

Core sector of **EIC** analyses

3.0 Future perspectives

EIC Yellow Report Ø [EICUG [arXiv:2103.05419]]

Gluon content at **NICA-SPD** Ø [NICA [arXiv:2011.15005]]

Accessing the proton content

Significance of large-x studies at NICA-SPD

3.0 Future perspectives

EIC Yellow Report Ø [EICUG [arXiv:2103.05419]]

Gluon content at **NICA-SPD** Ø [NICA [arXiv:2011.15005]]

Accessing the proton content

Significance of large-x studies at NICA-SPD

All NINPHA nodes *involved* in **JLab12** physics

Future perspectives 3.0

Hadronic structure at high energies

3.0 Future perspectives

Quarkonium studies at **HL-LHC** *O* [QAT [arXiv:2012.14161]]

Hadronic structure at high energies

Intrinsic effect of gluon polarization in **unpolarized** pp collisions

3.0 Future perspectives

Quarkonium studies at **HL-LHC** *O* [QAT [arXiv:2012.14161]]

Hadronic structure at high energies

Intrinsic effect of gluon polarization in **unpolarized** pp collisions

Precision studies of proton structure via natural stability of high-energy resummation

3.0 Future perspectives

Forward Physics Facility

Quarkonium studies at **HL-LHC** *O* [QAT [arXiv:2012.14161]]

The Forward Physics Facility (**FPF**) \mathscr{O} [FPF [arXiv:2109.10905]]

Hadronic structure at high energies

...two high-energy collaboration papers signed by NINPHA members! Intrinsic effect of gluon polarization in **unpolarized** pp collisions

Precision studies of proton structure via **natural stability** of high-energy resummation

3.0 Future perspectives

Forward Physics Facility

Quarkonium studies at **HL-LHC** *O* [QAT [arXiv:2012.14161]]

The Forward Physics Facility (**FPF**) \mathscr{O} [FPF [arXiv:2109.10905]]

3.0 Future perspectives

3.0 Future perspectives

Interplay of different factorizations

3.0 Future perspectives

Interplay of different factorizations

3.0 Future perspectives

Present and future of NINPHA

All NINPHA nodes \rightarrow **fundamental role** in their area of expertise

Collaboration between NINPHA nodes \rightarrow *deep* and *historical* **roots**

Strength of our metodology \rightarrow **synergy** toward *future challenges*

- **Hadron structure** \rightarrow extremely varied and complex research line, *different viewpoints* needed
- Variety of approaches \rightarrow consolidation of **coherence** and **homogeneity** of our research lines
- Main effort in the conceptual development of a new **EIC** detector $\rightarrow \mathcal{O}$ **EIC** Yellow Report
- Sardinian Workshop on Spin studies and related issues (Sar WorS), Cagliari (2019, 2021)
- **Link** with *high-energy* physics \leftarrow *precision* calculations **assume** knowledge of hadronic matter

Backup slides

Drell-Yan

Factorization and universality

SIDIS

SIDIS

Factorization and universality

SIDIS

Factorization and universality

SIDIS

Factorization and universality

SIDIS

Factorization and universality

SIDIS

Factorization and universality

Factorization and universality

SIDIS

Factorization and universality

Factorization and universality

Factorization and universality

SIDIS

Factorization and universality

SIDIS

Factorization and universality

Common ground between **TMD** and **HEF** factorization

NINPHA/**Pavia** + QFT@Colliders/**Cosenza** + IFJ **Krakow**

[A.D. Bolognino, F.G.C., D.Yu. Ivanov, A. Papa, W. Schäfer, A. Szczurek (2021)]

Common ground between **TMD** and **HEF** factorization NINPHA/**Pavia** + QFT@Colliders/**Cosenza** + IFJ **Krakow**

- [A.D. Bolognino, F.G.C., D.Yu. Ivanov, A. Papa, W. Schäfer, A. Szczurek (2021)]

Common ground between **TMD** and **HEF** factorization NINPHA/**Pavia** + QFT@Colliders/**Cosenza** + IFJ **Krakow**

[A.D. Bolognino, F.G.C., D.Yu. Ivanov, A. Papa, W. Schäfer, A. Szczurek (2021)]

Common ground between **TMD** and **HEF** factorization NINPHA/**Pavia** + QFT@Colliders/**Cosenza** + IFJ **Krakow** [A.D. Bolognino, F.G.C., D.Yu. Ivanov, A. Papa, W. Schäfer, A. Szczurek (2021)]

- Small- $x \Rightarrow$ **HEF** *
- * $\mathfrak{T}(\mathscr{A}) = \Phi(\kappa^2, Q^2) \otimes \mathscr{F}_g(x, \kappa^2)$

* Pavia gluon **TMD** as a small-*x* **UGD**?

