Perturbation Theory of Non-Perturbative QCD A massive expansion from first principles

Giorgio Comitini

Dipartimento di Fisica e Astronomia "E. Majorana" – Università degli Studi di Catania Groep Wetenschappen & Technologie – KU Leuven Campus KULAK Kortrijk Istituto Nazionale di Fisica Nucleare – Sezione di Catania

XVIII Conference on Theoretical Nuclear Physics in Italy November 23, 2021

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

The Screened Massive Expansion

OUTLINE & REFERENCES

- Screened massive expansion in a general covariant gauge F. Siringo, NPB 907 (2016); F. Siringo, G.C., PRD 98 (2018);
 F. Siringo, PRD 99+100 (2019)
- RG analysis of the strong interactions G.C., F. Siringo, PRD 102 (2020)
- Dynamical mass generation in the quark sector G.C., D. Rizzo, M. Battello, F. Siringo, PRD 104 (2021)
- ... and more

G.C., F. Siringo, PRD (2016-2021)

The aim is to formulate a predictive, self-contained, optimized perturbation theory for low-energy QCD from first principles

(4回) (日) (日)

Relatively recent results (2007-2009) from lattice calculations: due to the strong interactions (no Higgs mechanism!) **at low energies the gluons acquire a mass!**

Duarte et al., Phys. Rev. D 94 (2016)

Pure YMT. No. of lattice sites up to 128^4 , volumes up to $\sim (27 \text{ fm})^4$: huge lattices!

Something similar happens to the quarks: violation of the (approximate) chiral symmetry – due to the strong interactions at low energies the quark mass is enhanced

Kamleh et al., Phys. Rev. D 71 (2005)

Quenched QCD (on a smaller lattice) - similar results for the unquenched theory

Dynamical mass generation is of particular interest:

From a phenomenological standpoint

 since massive d.o.f. modify the IR behavior of the strong interactions – or perhaps, should we say, they allow us to describe it more faithfully?

Dynamical mass generation is of particular interest:

From a phenomenological standpoint

 since massive d.o.f. modify the IR behavior of the strong interactions – or perhaps, should we say, they allow us to describe it more faithfully?

From a theoretical standpoint

- since it cannot be described at any finite order in standard perturbation theory – for the gluons, gauge invariance forbids it; for the quarks, the corrections are too small
- it is thus a "non-perturbative" effect of the strong interactions

イロト イヨト イヨト・

Well known: ordinary QCD-PT breaks down in the IR

- From the standpoint of ordinary PT, the other side of the coin of UV-asymptotic freedom is the strong coupling regime in the IR: the running coupling α_s(p) blows up at p ~ Λ_{QCD}, making ordinary PT useless
- Nonetheless, the IR breakdown is not the main reason why DMG cannot be described in ordinary PT: as discussed, there are other constraints (e.g. gauge-invariance)
- On the other hand, it prevents us from doing "simple" and improvable perturbative calculations in the low-energy regime of QCD

イロト 不同 とくほ とくほう

Is the ordinary (massless) expansion point of QCD inadequate for describing the IR phenomenology?

- Can a change of expansion point account for gluon DMG?
- Does the change lead to a viable perturbation theory in the IR (i.e., no Landau pole, sufficiently small coupling, etc.)?
- What results do we get if the gluons are treated as massive already at tree-level?
- Can DMG for the quarks (i.e., mass enhancement) be accounted for by similar methods?

(1) マン・ション・

Screened massive expansion of pure YMT F.S. Nucl. Phys. B 907 (2016); F.S.+G.C. Phys. Rev. D 98 (2018); and more

Standard BRST invariant SU(N) YM Lagrangian:

$$S = S_0 + S_I = \left[S_0 + \frac{1}{2}\int A_\mu \,\delta\Gamma^{\mu\nu} A_\nu\right] + \left[S_I - \frac{1}{2}\int A_\mu \,\delta\Gamma^{\mu\nu} A_\nu\right]$$
$$\begin{cases} \delta\Gamma^{\mu\nu} = i\left[\Delta_m^{-1\mu\nu} - \Delta_0^{-1\mu\nu}\right] = m^2 \,t^{\mu\nu}(p) \quad \text{(2-point vertex)}\\ \Delta_m^{\mu\nu}(p) = \frac{-i}{p^2 - m^2} \,t^{\mu\nu}(p) + \frac{-i\xi}{p^2} \,\ell^{\mu\nu}(p) \quad \text{(free propagator)} \end{cases}$$

P.T. with the new vertex set

$$\mathcal{L}_{3} = -gf_{abc}(\partial_{\mu}A_{a\nu})A^{\mu}_{b}A^{\nu}_{c}, \quad \mathcal{L}_{4} = -\frac{1}{4}g^{2}f_{abc}f_{ade}A_{b\mu}A_{c\nu}A^{\mu}_{d}A^{\nu}_{e}$$
$$\mathcal{L}_{gh} = -gf_{abc}(\partial_{\mu}\omega^{\star}_{a})\omega_{b}A^{\mu}_{c}, \quad \mathcal{L}_{m} = -\frac{1}{2}\delta_{ab}\delta\Gamma_{\mu\nu}A^{\mu}_{a}A^{\nu}_{b}$$

æ

4

Screened massive expansion of pure YMT F.S. Nucl. Phys. B 907 (2016); F.S.+G.C. Phys. Rev. D 98 (2018); and more

Non-trivial mechanism for dynamical mass generation:

$$\Delta_{T}(p) = \frac{-i}{(p^{2}-m^{2})-\Pi^{T}} = \frac{-i}{(p^{2}-m^{2})-(-m^{2}+\Pi_{Loops}^{T})} = \frac{-i}{p^{2}-\Pi_{Loops}^{T}}$$

$$\Sigma = -\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{(1a)}^{N} \sum_{j=1}^{N} \sum_{(1c)}^{N} \sum_{j=1}^{N} \sum_{j$$

Standard UV behavior $\implies \Pi^{finite} \sim -\frac{Ng^2}{(4\pi)^2} p^2 \left(\frac{13}{6} - \frac{\xi}{2}\right) \log \frac{p^2}{\mu^2}$

Screened massive expansion of pure YMT F.S. Nucl. Phys. B 907 (2016); F.S.+G.C. Phys. Rev. D 98 (2018); and more

Setting $s = p^2/m^2 \leftarrow$ the scale *m* cannot be fixed by theory! $\Pi_{Loops}^T = -\frac{3Ng^2}{(4\pi)^2} p^2 [F(s) + \xi F_{\xi}(s)] + \Pi^{diverg.} + \Pi^{c.t.}$

After subtraction (field-strength renormalization):

$$\Delta(p) = \frac{Z}{p^2 \left[F(s) + \xi F_{\xi}(s) + F_0\right]} \qquad \mu \Leftrightarrow F_0$$

• Results depend on $\mu/m \rightarrow F_0$ • Propagator saturates at p = 0 \longrightarrow gluon DMG! Best fit at $\xi = 0$: $\begin{cases} m = 0.654 \text{ GeV} \\ F_0 = -0.887 \end{cases}$

Gauge-parameter-independence of poles and residues Proof by Nielsen identities (BRST) – F.S.+G.C. PRD 98 (2018)

 Via the exact BRST symmetry and the Nielsen identities, the poles p₀ are gauge-invariant (i.e. ξ-independent)

$$\mathsf{N.l.} \to \boxed{\frac{\partial}{\partial \xi} \frac{1}{\Delta(p)} = G^T(p) \left[\frac{1}{\Delta(p)}\right]^2} \quad G \sim \langle T \left[D^\mu \omega_a A^\nu_a \omega^\star_b B_b \right] \rangle$$
$$\frac{1}{\Delta(p_0(\xi))} = 0; \quad \frac{\mathrm{d}}{\mathrm{d}\xi} \frac{1}{\Delta(p_0(\xi))} = 0 \qquad \Longrightarrow \qquad \boxed{\frac{\mathrm{d}}{\mathrm{d}\xi} p_0(\xi) = 0}$$

- In the S.M.E. this is not automatic at finite order, but can be enforced by tuning m²(ξ) and F₀(ξ).
- We noticed that with the fitted F₀ the phase of the residue also is almost ξ-independent ⇒

reverse the reasoning and determine F_0 by fixing the phase

・ 回 ト ・ ヨ ト ・ ヨ ト …

Optimized S.M.E. of pure YMT

Optimization by ξ -independence of principal part – F.S.+G.C. Phys. Rev. D 98 (2018)

0.8

1.2

э.

Complex-conjugate poles and confinement F.S.+G.C. Phys. Rev. D 98 (2018)

In the long wavelength limit $p^2 = \omega^2 - \mathbf{k}^2 \rightarrow \omega^2$ the poles are at $\omega = \pm (M \pm i\gamma)$ where M = 0.581 GeV and $\gamma = 0.375 \text{ GeV}$.

No violation of unitarity and causality (Stingl, 1996):

short-lived quasigluons with lifetime $\tau=1/\gamma$ are canceled from the asymptotic states

ъ

(1) マン・ (1) マン・

The gluon propagator (YMT)

Optimized S.M.E. vs. Lattice data in the Landau gauge - F.S.+G.C. PRD 98 (2018)

$$\Delta(p) = \frac{Z}{p^2 \left[F(s) + \xi F_{\xi}(s) + F_0(\xi)\right]} \qquad \xi = 0, \text{ opt.}: \begin{cases} F_0(0) = -0.876\\ m(0) = 656 \text{ MeV} \end{cases}$$

イロト イヨト イヨト イヨト

The Renormalization Group (RG) equations can be used to extend the validity of the perturbative results over a wide range of energies (resummation of large logarithms).

• A strong running coupling $\alpha_s(\mu)$ can be defined like in standard PT – use the lattice-friendly Taylor scheme

$$\alpha_s(\mu) = \alpha_s(\mu_0) \frac{Z_A(\mu) Z_c^2(\mu)}{Z_A(\mu_0) Z_c^2(\mu_0)} \qquad \mu \frac{d\alpha_s}{d\mu}(\mu) = \beta(\mu/m, \alpha_s(\mu/m))$$

• In the Taylor-scheme S.M.E., $\beta = \beta(\mu/m, \alpha_s(\mu/m))$: the beta function depends explicitly on the renormalization scale!

$$\beta = -\frac{3N\alpha_s^2}{4\pi} \frac{\mu^2}{m^2} H'(\mu^2/m^2) \qquad \qquad H(s) = F(s) + 2G(s)$$
from ghost prop.

・ 回 ト ・ ヨ ト ・ ヨ ト …

E DQC

RG-improvement of the screened massive expansion G.C.+F.S. Phys. Rev. D 102 (2020)

What happens to the strong running coupling when it is computed in the screened massive expansion?

It does not have a Landau pole in the IR!

The function H(s) is not monotonic – in the UV, H'(s) > 0 (usual behavior); in the IR, H'(s) < 0: the β function **changes sign!**

Figure 2. Function H(x). The minimum $H(x_0) \approx 3.090$ is found at $x_0 \approx 1.044$.

The gluon mass screens the IR from the divergences

RG-improvement of the screened massive expansion G.C.+F.S. Phys. Rev. D 102 (2020)

Upsides of the method

- Finite (!) and moderately small running coupling α_s(p)
- Good agreement @1L with the lattice propagators at momenta p ≥ m

Downsides of the method

- $\alpha_s(p)$ not small enough for a 1L truncation for $p \leq m$
- Need to match with the fixed-scale scheme

► < Ξ > ...

∃ <2 <</p>

Dynamical mass generation in the quark sector G.C.+D.R.+M.B.+F.S. Phys. Rev. D 104 (2021)

Is it possible to apply the same method in the **quark sector** to describe IR-DMG for the quarks in full QCD?

Recall that the light quarks ($M_q \sim$ few MeV in the UV) acquire an IR mass $M_q \sim 300 - 400$ MeV due to the strong interactions.

• Shift the quark Lagrangian so that the quarks propagate with an **enhanced mass** *M*

• Do not treat *M* as if it were $M = M_B [1 + O(\alpha_s)]$

$$S_M(p) = \frac{i}{p - M}$$
 $\delta \Gamma_q = i(M - M_B)$

・ロト ・雪 ト ・ ヨ ト ・

∃ <2 <</p>

Dynamical mass generation in the quark sector G.C.+D.R.+M.B.+F.S. Phys. Rev. D 104 (2021)

Unlike in the pure YMT setting, here the S.M.E. is not optimized \implies we must rely on the lattice to fit the parameters

(The only parameter we don't fit directly is the gluon m^2)

イロト イヨト イヨト イヨト

Dynamical mass generation in the quark sector G.C.+D.R.+M.B.+F.S. Phys. Rev. D 104 (2021)

In the quark sector also we find **complex-conjugate poles** \implies quark confinement

M_{lat} (MeV)	p_0 (MeV)
18	$\pm 373.7 \pm 202.3i$
36	$\pm 388.0 \pm 194.2i$
54	$\pm 390.7 \pm 185.6i$
72	$\pm 407.7 \pm 174.9i$
90	$\pm 424.4 \pm 177.3i$

(At variance with a previous result)

(日本) (日本) (日本)

SUMMARY

• The screened massive expansion works well in the IR Excellent agreement with lattice with few free parameters

Optimization by gauge invariance Self-contained optimization + predictivity Complex conjugate poles → gluon confinement

• Readily extended to quarks

DMG in the quark sector C.c. poles \rightarrow quark confinement

(日本) (日本) (日本)

SUMMARY

• The screened massive expansion works well in the IR Excellent agreement with lattice with few free parameters

Optimization by gauge invariance Self-contained optimization + predictivity Complex conjugate poles → gluon confinement

Readily extended to quarks
 DMG in the quark sector
 C.c. poles → quark confinement

THANK YOU!

個 とくき とくきと

BACKUP SLIDES

<ロ> <同> <同> < 同> < 同> < 同> <

∃ 𝒫𝔄𝔄

Complex poles and confinement

Schwinger function vs. Minkowski

$$\Delta_E(t_E) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}p_4}{2\pi} e^{ip_4 t_E} \Delta(\vec{p} = 0, p_4) \quad (t_E = \text{Euclidean time})$$

$$\begin{cases} \Delta_E(p) = \frac{R}{p^2 + z_0^2} + \frac{R^*}{p^2 + z_0^{*2}} & \text{where} \quad \boxed{z_0 = M + i\gamma} \\ A_E(p) = \begin{bmatrix} |R| & 1 \end{bmatrix} & M|t_p| & (1 + 1) + (1 + 1) \end{cases}$$

$$\Delta_E(t_E) = \left\lfloor \frac{|R|}{\sqrt{M^2 + \gamma^2}} \right\rfloor e^{-M|t_E|} \cos\left(\gamma |t_E| - \phi\right), \quad \phi = \operatorname{Arg}[R] - \tan^{-1} \frac{\gamma}{M}$$

$$\Delta_M(t) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}p_0}{2\pi} \, e^{ip_0 t} \, \Delta_M(p_0, \vec{p} = 0) \quad (t = \text{real time})$$

$$\begin{cases} \Delta_M(p) = \frac{R}{-p^2 + z_0^2} + \frac{R^*}{-p^2 + z_0^{*2}} \\ \Delta_M(t) = \left[\frac{|R|}{\sqrt{M^2 + \gamma^2}}\right] e^{-\gamma|t|} \sin\left(M|t| + \phi\right) \end{cases}$$

イロト イヨト イヨト イヨト

æ

Gluon propagator in general R_{ξ} gauges F.S.+G.C. PRD 98 (2018)

Gluon propagator $\Delta(p)$ in various linear covariant (R_{ξ}) gauges

ъ

★ E ► ★ E ►

Dynamical mass generation in the quark sector G.C.+D.R.+M.B.+F.S. Phys. Rev. D 104 (2021)

The S.M.E. LO approx. of the quark Z-function is not good (left)

On the right, we used a resummed gluon propagator – takes into account the gluon c.c. poles, higher orders (partially), etc.

We expect a NLO calculation to solve the mismatch (e.g. CF model)

The gluon propagator (full QCD)

Optimized S.M.E. vs. Lattice data in the Landau gauge - w/ L. Leone (unpublished)

$$\Delta(p) = \frac{Z}{p^2 \left[F(s) + F_q(s, M_q) + \xi F_{\xi}(s) + F_0(\xi) \right]}$$

 $M_q = 386 \text{ MeV}$ (quark IR mass)

글 🕨 🖌 글 🕨

$$\xi = 0$$
, opt.: $F_0(0) = -0.432$
 $|\theta(\xi)| < 0.015$

$$M = 0.887 \text{ GeV}, \ \gamma = 0.385 \text{ GeV}$$

Analogous results in full QCD, with a **heavier gluon** (expected based on other approaches)

Quasi-gluon dispersion relations at $T \neq 0$ F.S.+G.C. Phys. Rev. D 103 (2021)

Are the gluon poles stable? Probe the theory at finite temperature.

- Compute the gluon propagator at $T \neq 0$ (using the S.M.E.)
- Fix the T-dependent free parameters using the lattice
- Obtain the dispersion relations for the quasi-gluons

Giorgio Comitini Perturbation Theory of Non-Perturbative QCD 27/28

Quasi-gluon dispersion relations at $T \neq 0$ F.S.+G.C. Phys. Rev. D 103 (2021)

Compute the poles as a function of the temperature

A phase transition is distinguishable: **deconfinement** ($T \approx 270$ MeV for pure YMT)