Accessing the properties of deconfined matter in heavy-ion collisions

Andrea Beraudo

INFN - Sezione di Torino

Cortona 2021
Pisa, 22-24 novembre 2021

INFN

Istituto Nazionale di Fisica Nucleare

The SIM network

- Catania: Paolo Castorina (PA), Giorgio Comitini (PhD), Fabrizio Murgana (PhD), Fabio Siringo (PA);
- Firenze: Francesco Becattini (PO), Francesco Bigazzi (PR INFN), Aldo Cotrone (PA), Maria Paola Lombardo (PR INFN), Andrea Palermo (PhD);
- LNS: Giuseppe Galesi (PhD), Vincenzo Greco (PO), Vincenzo Minissale (AdR), Salvatore Plumari (RTDA), Maria Lucia Sambataro (PhD);
- Torino: Wanda Alberico (PO), Andrea Beraudo (Ric INFN), Arturo De Pace (PR INFN), Marco Monteno (PR INFN), Marzia Nardi (Ric. INFN), Daniel Pablos (Ric INFN-Fellini)

Heavy-ion collisions: exploring the QCD phase-diagram

QCD phases identified through the order parameters

- Polyakov loop $\langle L\rangle \sim e^{-\beta \Delta F_{Q}}$: energy cost to add an isolated color charge
- Chiral condensate $\langle\bar{q} \bar{q}\rangle \sim$ effective mass of a "dressed" quark in a hadron

Heavy-ion collisions: exploring the QCD phase-diagram

QCD phases identified through the order parameters

- Polyakov loop $\langle L\rangle \sim e^{-\beta \Delta F_{Q}}$: energy cost to add an isolated color charge
- Chiral condensate $\langle\bar{q} \bar{q}\rangle \sim$ effective mass of a "dressed" quark in a hadron

Heavy-lon Collision (HIC) experiments performed to study the transition

- From QGP (color deconfinement, chiral symmetry restored)
- to hadronic phase (confined, chiral symmetry broken)
$\mathrm{NB}\langle\bar{q} q\rangle \neq 0$ responsible for most of the baryonic mass of the universe: only $\sim 35 \mathrm{MeV}$ of the proton mass from $m_{u / d} \neq 0$

Heavy-ion collisions: exploring the QCD phase-diagram

NJL model, $\mathrm{N}_{\mathrm{f}}=2$
phase diagram with isentropic trajectories

- Region explored at the LHC $\left(\sqrt{s_{\mathrm{NN}}} \approx 5 \mathrm{TeV}\right)$ and highest RHIC energy: high-T/low-density (early universe, $n_{B} / n_{\gamma} \sim 10^{-9}$)
- Higher baryon-density region accessible at lower $\sqrt{s_{\mathrm{NN}}} \approx 10 \mathrm{GeV}$ (Beam-Energy Scan at RHIC, fixed-target experiments)

Heavy-ion collisions: exploring the QCD phase-diagram

NJL model, $\mathrm{N}_{\mathrm{f}}=2$
phase diagram with isentropic trajectories

- Region explored at the LHC $\left(\sqrt{s_{\mathrm{NN}}} \approx 5 \mathrm{TeV}\right)$ and highest RHIC energy: high-T/low-density (early universe, $n_{B} / n_{\gamma} \sim 10^{-9}$)
- Higher baryon-density region accessible at lower $\sqrt{s_{\mathrm{NN}}} \approx 10 \mathrm{GeV}$ (Beam-Energy Scan at RHIC, fixed-target experiments)

Heavy-ion collisions: exploring the QCD phase-diagram

- Region explored at the LHC $\left(\sqrt{s_{\mathrm{NN}}} \approx 5 \mathrm{TeV}\right)$ and highest RHIC energy: high-T/low-density (early universe, $n_{B} / n_{\gamma} \sim 10^{-9}$)
- Higher baryon-density region accessible at lower $\sqrt{s_{\mathrm{NN}}} \approx 10 \mathrm{GeV}$ (Beam-Energy Scan at RHIC, fixed-target experiments)

Looking for signatures of the CEP

$\xi \rightarrow \infty$ at CEP should affect observables, e.g. ratio of cumulants of distributions of conserved charges (Mario Motta PhD thesis and M. Motta et al., Eur.Phys.J.C 80 (2020) 8, 770)

Heavy-ion collisions: a cartoon of space-time evolution

- Soft probes (low- p_{T} hadrons): collective behavior of the medium;
- Hard probes (high- p_{T} particles, heavy quarks, quarkonia): produced in hard $p Q C D$ processes in the initial stage, allow to perform a tomography of the medium.

A medium displaying a collective behavior

Pressure-driven hydrodynamic expansion

$$
(\epsilon+P) \frac{d v^{i}}{d t} \underset{v \ll c}{\overline{<}}-\frac{\partial P}{\partial x^{i}}
$$

A medium displaying a collective behavior

Pressure-driven hydrodynamic expansion

$$
(\epsilon+P) \frac{d v^{i}}{d t} \underset{v \ll c}{\overline{<}}-\frac{\partial P}{\partial x^{i}}
$$

NB picture relying on the condition $\lambda_{\text {mfp }} \ll L$

A medium displaying a collective behavior

- Fourier expansion of azimuthal particle distribution

$$
\begin{gathered}
\frac{d N}{d \phi}=\frac{N}{2 \pi}\left[1+\sum_{n=1}^{\infty} 2 v_{n} \cos \left[n\left(\phi-\psi_{n}\right)\right]\right] \\
v_{n} \equiv\left\langle\cos \left[n\left(\phi-\psi_{n}\right)\right]\right\rangle
\end{gathered}
$$

- $\vec{\nabla} P=c_{s}^{2} \vec{\nabla} \epsilon$: response to geometric deformation depends on the squared speed of sound (figure from M. Motta et al., Eur.Phys.J.C 80 (2020) 8, 770)

Relativistic hydrodynamics: conceptual setup

When $\lambda_{\text {mfp }} \ll L$ only conservation laws matter:

$$
\partial_{\mu} T^{\mu \nu}=0 \quad+\quad \operatorname{EoS} \quad P=P(\epsilon)
$$

Relativistic hydrodynamics: conceptual setup

When $\lambda_{\text {mfp }} \ll L$ only conservation laws matter:

$$
\partial_{\mu} T^{\mu \nu}=0 \quad+\quad \operatorname{EoS} \quad P=P(\epsilon)
$$

Ideal hydrodynamics:

$$
T^{\mu \nu}=T_{\mathrm{id}}^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu}
$$

Relativistic hydrodynamics: conceptual setup

When $\lambda_{\text {mfp }} \ll L$ only conservation laws matter:

$$
\partial_{\mu} T^{\mu \nu}=0 \quad+\quad \operatorname{EoS} \quad P=P(\epsilon)
$$

Ideal hydrodynamics:

$$
T^{\mu \nu}=T_{\mathrm{id}}^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu}
$$

Viscous hydrodynamics:

$$
T^{\mu \nu}=T_{\mathrm{id}}^{\mu \nu}+\pi^{\mu \nu}
$$

Relativistic hydrodynamics: conceptual setup

When $\lambda_{\mathrm{mfp}} \ll L$ only conservation laws matter:

$$
\partial_{\mu} T^{\mu \nu}=0 \quad+\quad \operatorname{EoS} \quad P=P(\epsilon)
$$

Ideal hydrodynamics:

$$
T^{\mu \nu}=T_{\mathrm{id}}^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu}
$$

Viscous hydrodynamics:

$$
T^{\mu \nu}=T_{\mathrm{id}}^{\mu \nu}+\pi^{\mu \nu}
$$

- Relativistic Navier-Stokes first-order theory (violates causality)

$$
\pi^{\mu \nu}=2 \eta \nabla^{<\mu} u^{\nu>}
$$

with

$$
\nabla^{<\mu} u^{\nu>} \equiv \frac{1}{2}\left(\nabla^{\mu} u^{\nu}+\nabla^{\nu} u^{\mu}\right)-\frac{1}{3} \Delta^{\mu \nu}\left(\nabla_{\alpha} u^{\alpha}\right)
$$

Relativistic hydrodynamics: conceptual setup

When $\lambda_{\mathrm{mfp}} \ll L$ only conservation laws matter:

$$
\partial_{\mu} T^{\mu \nu}=0 \quad+\quad \operatorname{EoS} \quad P=P(\epsilon)
$$

Ideal hydrodynamics:

$$
T^{\mu \nu}=T_{\mathrm{id}}^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu}
$$

Viscous hydrodynamics:

$$
T^{\mu \nu}=T_{\mathrm{id}}^{\mu \nu}+\pi^{\mu \nu}
$$

- Relativistic Navier-Stokes first-order theory (violates causality)

$$
\pi^{\mu \nu}=2 \eta \nabla^{<\mu} u^{\nu>}
$$

with

$$
\nabla^{<\mu} u^{\nu>} \equiv \frac{1}{2}\left(\nabla^{\mu} u^{\nu}+\nabla^{\nu} u^{\mu}\right)-\frac{1}{3} \Delta^{\mu \nu}\left(\nabla_{\alpha} u^{\alpha}\right)
$$

- Israel-Stewart second-order theory and further developments (respect causality): re-discovered and improved by heavy-ion community

$$
\dot{\pi}^{\mu \nu}=-\frac{1}{\tau_{\pi}}\left(\pi^{\mu \nu}-2 \eta \nabla^{<\mu} u^{\nu>}\right)
$$

Beyond the Israel-Stewart theory

Andamenti di PL/PT per diversi valori di η / s con $\pi_{0}=0$ e $\mathrm{T}_{0}=0.3 \mathrm{GeV}$

One can perform a Chapman-Enskog expansion in powers of $\mathrm{Kn}=\lambda_{\mathrm{mfp}} / L$ and compare the results with the exact solution of the Boltzmann equation at fixed η / s (bachelor thesis by Vittorio Larotonda).

Beyond the Israel-Stewart theory

Andamenti di PL/PT per diversi valori di η / s con $\pi_{0}=0$ e $\mathrm{T}_{0}=0.3 \mathrm{GeV}$

One can perform a Chapman-Enskog expansion in powers of $\mathrm{Kn}=\lambda_{\mathrm{mfp}} / L$ and compare the results with the exact solution of the Boltzmann equation at fixed η / s (bachelor thesis by Vittorio Larotonda). NB For the Boltzmann approach at fixed η / s se the results by the

Numerical implementation: development of ECHO-QGP

Major project which has involved the Universities and INFN sections of Firenze, Torino and Ferrara

- Eur.Phys.J. C73 (2013) 2524 Development of ECHO-QGP, first public relativistic viscous hydrodynamic code in 3+1 dimensions for the study of HIC's;
- Eur.Phys.J. C75 (2015) no.9, 406: study of v_{1} of pions, vorticity and polarization of \wedge hyperons (recently measured by the STAR collaboration) in HIC's;
- Eur.Phys.J. C76 (2016) no.12, 659: first relativistic magneto-hydrodynamic code developed for the study of HIC's.

Directed flow, vorticity and polarization

Participant nucleons deposit more energy along their direction of motion

Directed flow, vorticity and polarization

Participant nucleons deposit more energy along their direction of motion

- Fireball deformation in the RP leads to $v_{1} \equiv\left\langle\cos \left(\phi-\psi_{R P}\right)\right\rangle \neq 0$

Directed flow, vorticity and polarization

Participant nucleons deposit more energy along their direction of motion

- Fireball deformation in the RP leads to $v_{1} \equiv\left\langle\cos \left(\phi-\psi_{R P}\right)\right\rangle \neq 0$
- Enormous angular momentum $\left(\left|J_{y}\right| \sim 10^{3}-10^{4} \hbar\right)$ and vorticity $\vec{\omega} \equiv \frac{1}{2}(\vec{\nabla} \times \vec{v}) \sim 10^{22} \mathrm{~s}^{-1}$ of the fireball partially transferred to polarization of produced particles via spin-orbit interaction

$$
\widehat{\rho} \equiv \frac{1}{Z} \exp \left[-\left(\widehat{H}-\omega \cdot \hat{\jmath}-\mu_{Q} \widehat{Q}\right) / T\right]
$$

Vorticity and polarization: results

- Mean spin vector for spin $1 / 2$ particles:

$$
S^{\mu}(p)=-\frac{1}{8 m} \epsilon^{\mu \rho \sigma \tau} p_{\tau} \frac{\int d \Sigma_{\lambda} p^{\lambda} n_{F}\left(1-n_{F}\right) \varpi_{\rho \sigma}}{\int d \Sigma_{\lambda} p^{\lambda} n_{F}}
$$

where $\varpi_{\mu \nu} \equiv-\frac{1}{2}\left(\partial_{\mu} \beta_{\nu}-\partial_{\nu} \beta_{\mu}\right)$, with $\beta_{\nu} \equiv u_{\nu} / T$

- Polarization of Λ hyperons $\sim 2 \%$ measured through $\Lambda \rightarrow p \pi^{-}$

$$
\frac{d N}{d \cos \theta^{*}}=\frac{1}{2}\left(1+\alpha_{\Lambda} \vec{P}_{\Lambda} \cdot \hat{p}_{p}^{*}\right)
$$

See e.g. F. Becattini et al., Lect.Notes Phys. 987 (2021)

Vorticity and polarization: results

- Mean spin vector for spin $1 / 2$ particles:

$$
S^{\mu}(p)=-\frac{1}{8 m} \epsilon^{\mu \rho \sigma \tau} p_{\tau} \frac{\int d \Sigma_{\lambda} p^{\lambda} n_{F}\left(1-n_{F}\right) \varpi_{\rho \sigma}}{\int d \Sigma_{\lambda} p^{\lambda} n_{F}}
$$

where $\varpi_{\mu \nu} \equiv-\frac{1}{2}\left(\partial_{\mu} \beta_{\nu}-\partial_{\nu} \beta_{\mu}\right)$, with $\beta_{\nu} \equiv u_{\nu} / T$

- Polarization of Λ hyperons $\sim 2 \%$ measured through $\Lambda \rightarrow p \pi^{-}$

$$
\frac{d N}{d \cos \theta^{*}}=\frac{1}{2}\left(1+\alpha_{\Lambda} \vec{P}_{\Lambda} \cdot \hat{p}_{\rho}^{*}\right)
$$

See e.g. F. Becattini et al., Lect.Notes Phys. 987 (2021)

The role of the magnetic field and axial anomaly

- Huge magnetic field $\left(B \sim 10^{15} \mathrm{~T}\right)$ orthogonal to the reaction plane from

$$
d_{\mu}\left(T_{\text {matt }}^{\mu \nu}+T_{\text {field }}^{\mu \nu}\right)=0, \quad d_{\mu} F^{\mu \nu}=-J^{\nu} \quad \text { and } \quad d_{\mu} F^{\star \mu \nu}=0
$$

(Eur.Phys.J. C76 (2016) no.12, 659)

The role of the magnetic field and axial anomaly

- Huge magnetic field $\left(B \sim 10^{15} \mathrm{~T}\right)$ orthogonal to the reaction plane from

$$
d_{\mu}\left(T_{\text {matt }}^{\mu \nu}+T_{\text {field }}^{\mu \nu}\right)=0, \quad d_{\mu} F^{\mu \nu}=-J^{\nu} \quad \text { and } \quad d_{\mu} F^{\star \mu \nu}=0
$$

(Eur.Phys.J. C76 (2016) no.12, 659)

- Spin of u / d quarks aligned/anti-aligned with \vec{B}

The role of the magnetic field and axial anomaly

- Huge magnetic field $\left(B \sim 10^{15} \mathrm{~T}\right)$ orthogonal to the reaction plane from

$$
d_{\mu}\left(T_{\text {matt }}^{\mu \nu}+T_{\text {field }}^{\mu \nu}\right)=0, \quad d_{\mu} F^{\mu \nu}=-J^{\nu} \quad \text { and } \quad d_{\mu} F^{\star \mu \nu}=0
$$

(Eur.Phys.J. C76 (2016) no.12, 659)

- Spin of u / d quarks aligned/anti-aligned with \vec{B}
- Non-trivial topological configurations of the colour field can lead, event by event, to an excess of quarks of a given chirality

$$
\frac{d}{d t}\left(N_{R}-N_{L}\right)=-N_{f} \frac{g^{2}}{16 \pi^{2}} \int d^{3} \times \widetilde{F}^{\alpha \beta, a} F_{\alpha \beta}^{a} \neq 0
$$

The role of the magnetic field and axial anomaly

- Huge magnetic field $\left(B \sim 10^{15} \mathrm{~T}\right)$ orthogonal to the reaction plane from

$$
d_{\mu}\left(T_{\text {matt }}^{\mu \nu}+T_{\text {field }}^{\mu \nu}\right)=0, \quad d_{\mu} F^{\mu \nu}=-J^{\nu} \quad \text { and } \quad d_{\mu} F^{\star \mu \nu}=0
$$

(Eur.Phys.J. C76 (2016) no.12, 659)

- Spin of u / d quarks aligned/anti-aligned with \vec{B}
- Non-trivial topological configurations of the colour field can lead, event by event, to an excess of quarks of a given chirality

$$
\frac{d}{d t}\left(N_{R}-N_{L}\right)=-N_{f} \frac{g^{2}}{16 \pi^{2}} \int d^{3} \times \widetilde{F}^{\alpha \beta, a} F_{\alpha \beta}^{a} \neq 0
$$

- $\vec{j}=\sigma_{5} \vec{B}$: separation of opposite-charge particles wrt the reaction plane

A medium inducing energy-loss to colored probes

Strong unbalance of di-jet events, visible at the level of the event-display itself, without any analysis: jet-quenching

A medium inducing energy-loss to colored probes

Strong unbalance of di-jet events, visible at the level of the event-display itself, without any analysis: jet-quenching

A medium inducing energy-loss to colored probes

Medium-induced suppression of high-momentum hadrons and jets quantified through the nuclear modification factor

$$
R_{A A} \equiv \frac{\left(d N^{h} / d p_{T}\right)^{A A}}{\left\langle N_{\text {coll }}\right\rangle\left(d N^{h} / d p_{T}\right)^{p \rho}}
$$

A medium inducing energy-loss to colored probes

Medium-induced suppression of high-momentum hadrons and jets quantified through the nuclear modification factor

$$
R_{A A} \equiv \frac{\left(d N^{h} / d p_{T}\right)^{A A}}{\left\langle N_{\text {coll }}\right\rangle\left(d N^{h} / d p_{T}\right)^{p p}}
$$

interpreted as energy carried away by radiated gluons,

How the medium responds to jets

Wake arising from jet propagation in an ideal and viscous medium studied in linearized hydrodynamics (Daniel Pablos et al., JHEP 05 (2021) 230)

Heavy Flavour in the QGP: the conceptual setup

- Description of soft observables based on hydrodynamics, assuming to deal with a system close to local thermal equilibrium (no matter why): collective behaviour of the medium;

Heavy Flavour in the QGP: the conceptual setup

- Description of soft observables based on hydrodynamics, assuming to deal with a system close to local thermal equilibrium (no matter why): collective behaviour of the medium;
- Description of jet-quenching based on energy-degradation of external probes (high- p_{T} partons): opacity of the medium;

Heavy Flavour in the QGP: the conceptual setup

- Description of soft observables based on hydrodynamics, assuming to deal with a system close to local thermal equilibrium (no matter why): collective behaviour of the medium;
- Description of jet-quenching based on energy-degradation of external probes (high- p_{T} partons): opacity of the medium;
- Description of heavy-flavour observables requires to employ/develop a setup (transport theory) allowing to deal with more general situations and in particular to describe how particles would (asymptotically) approach equilibrium.

Heavy Flavour in the QGP: the conceptual setup

- Description of soft observables based on hydrodynamics, assuming to deal with a system close to local thermal equilibrium (no matter why): collective behaviour of the medium;
- Description of jet-quenching based on energy-degradation of external probes (high- p_{T} partons): opacity of the medium;
- Description of heavy-flavour observables requires to employ/develop a setup (transport theory) allowing to deal with more general situations and in particular to describe how particles would (asymptotically) approach equilibrium.

NB At high $-p_{T}$ the interest in heavy flavor is no longer related to thermalization, but to the study of the mass and color charge dependence of jet-quenching (not addressed in this talk)

Transport theory: the Boltzmann equation

Time evolution of HQ phase-space distribution $f_{Q}(t, \mathbf{x}, \mathbf{p})$:

$$
\frac{d}{d t} f_{Q}(t, \mathbf{x}, \mathbf{p})=C\left[f_{Q}\right]
$$

Transport theory: the Boltzmann equation

Time evolution of HQ phase-space distribution $f_{Q}(t, \mathbf{x}, \mathbf{p})$:

$$
\frac{d}{d t} f_{Q}(t, \mathbf{x}, \mathbf{p})=C\left[f_{Q}\right]
$$

- Total derivative along particle trajectory

$$
\frac{d}{d t} \equiv \frac{\partial}{\partial t}+\mathbf{v} \frac{\partial}{\partial \mathbf{x}}+\mathbf{F} \frac{\partial}{\partial \mathbf{p}}
$$

Neglecting \mathbf{x}-dependence and mean fields: $\partial_{t} f_{Q}(t, \mathbf{p})=C\left[f_{Q}\right]$

Transport theory: the Boltzmann equation

Time evolution of HQ phase-space distribution $f_{Q}(t, \mathbf{x}, \mathbf{p})$:

$$
\frac{d}{d t} f_{Q}(t, \mathbf{x}, \mathbf{p})=C\left[f_{Q}\right]
$$

- Total derivative along particle trajectory

$$
\frac{d}{d t} \equiv \frac{\partial}{\partial t}+\mathbf{v} \frac{\partial}{\partial \mathbf{x}}+\mathbf{F} \frac{\partial}{\partial \mathbf{p}}
$$

Neglecting \mathbf{x}-dependence and mean fields: $\partial_{t} f_{Q}(t, \mathbf{p})=C\left[f_{Q}\right]$

- Collision integral:

$$
C\left[f_{Q}\right]=\int d \mathbf{k}[\underbrace{w(\mathbf{p}+\mathbf{k}, \mathbf{k}) f_{Q}(\mathbf{p}+\mathbf{k})}_{\text {gain term }}-\underbrace{w(\mathbf{p}, \mathbf{k}) f_{Q}(\mathbf{p})}_{\text {loss term }}]
$$

$w(\mathbf{p}, \mathbf{k}): \mathrm{HQ}$ transition rate $\mathbf{p} \rightarrow \mathbf{p}-\mathbf{k}$

From Boltzmann to Fokker-Planck

Expanding the collision integral for small momentum exchange ${ }^{1}$ (Landau)

$$
C\left[f_{Q}\right] \approx \int d \mathbf{k}\left[k^{i} \frac{\partial}{\partial p^{i}}+\frac{1}{2} k^{i} k^{j} \frac{\partial^{2}}{\partial p^{i} \partial p^{j}}\right]\left[w(\mathbf{p}, \mathbf{k}) f_{Q}(t, \mathbf{p})\right]
$$

From Boltzmann to Fokker-Planck

Expanding the collision integral for small momentum exchange ${ }^{1}$ (Landau)

$$
C\left[f_{Q}\right] \approx \int d \mathbf{k}\left[k^{i} \frac{\partial}{\partial p^{i}}+\frac{1}{2} k^{i} k^{j} \frac{\partial^{2}}{\partial p^{i} \partial p^{j}}\right]\left[w(\mathbf{p}, \mathbf{k}) f_{Q}(t, \mathbf{p})\right]
$$

The Boltzmann equation reduces to the Fokker-Planck equation

$$
\frac{\partial}{\partial t} f_{Q}(t, \mathbf{p})=\frac{\partial}{\partial p^{i}}\left\{A^{i}(\mathbf{p}) f_{Q}(t, \mathbf{p})+\frac{\partial}{\partial p^{j}}\left[B^{i j}(\mathbf{p}) f_{Q}(t, \mathbf{p})\right]\right\}
$$

where

$$
\begin{gathered}
A^{i}(\mathbf{p})=\int d \mathbf{k} k^{i} w(\mathbf{p}, \mathbf{k}) \longrightarrow \underbrace{A^{i}(\mathbf{p})=A(p) p^{i}}_{\text {friction }} \\
B^{i j}(\mathbf{p})=\frac{1}{2} \int d \mathbf{k} k^{i} k^{j} w(\mathbf{p}, \mathbf{k}) \longrightarrow \underbrace{B^{i j}(\mathbf{p})=\left(\delta^{i j}-\hat{p}^{i} \hat{p}^{j}\right) B_{0}(p)+\hat{p}^{i} \hat{p}^{j} B_{1}(p)}_{\text {momentum broadening }}
\end{gathered}
$$

From Boltzmann to Fokker-Planck

Expanding the collision integral for small momentum exchange ${ }^{1}$ (Landau)

$$
C\left[f_{Q}\right] \approx \int d \mathbf{k}\left[k^{i} \frac{\partial}{\partial p^{i}}+\frac{1}{2} k^{i} k^{j} \frac{\partial^{2}}{\partial p^{i} \partial p^{j}}\right]\left[w(\mathbf{p}, \mathbf{k}) f_{Q}(t, \mathbf{p})\right]
$$

The Boltzmann equation reduces to the Fokker-Planck equation

$$
\frac{\partial}{\partial t} f_{Q}(t, \mathbf{p})=\frac{\partial}{\partial p^{i}}\left\{A^{i}(\mathbf{p}) f_{Q}(t, \mathbf{p})+\frac{\partial}{\partial p^{j}}\left[B^{i j}(\mathbf{p}) f_{Q}(t, \mathbf{p})\right]\right\}
$$

where

$$
\begin{gathered}
A^{i}(\mathbf{p})=\int d \mathbf{k} k^{i} w(\mathbf{p}, \mathbf{k}) \longrightarrow \underbrace{A^{i}(\mathbf{p})=A(p) p^{i}}_{\text {friction }} \\
B^{i j}(\mathbf{p})=\frac{1}{2} \int d \mathbf{k} k^{i} k^{j} w(\mathbf{p}, \mathbf{k}) \longrightarrow \underbrace{B^{i j}(\mathbf{p})=\left(\delta^{i j}-\hat{p}^{i} \hat{p}^{j}\right) B_{0}(p)+\hat{p}^{i} \hat{p}^{j} B_{1}(p)}_{\text {momentum broadening }}
\end{gathered}
$$

Problem reduced to the evaluation of three transport coefficients, directly derived from the scattering matrix

Approach to equilibrium in the FP equation

The FP equation can be viewed as a continuity equation for the phase-space distribution of the kind $\partial_{t} \rho(t, \vec{p})+\vec{\nabla}_{p} \cdot \vec{J}(t, \vec{p})=0$

$$
\frac{\partial}{\partial t} \underbrace{f_{Q}(t, \mathbf{p})}_{\equiv \rho(t, \vec{p})}=\frac{\partial}{\partial p^{i}} \underbrace{\left\{A^{i}(\mathbf{p}) f_{Q}(t, \mathbf{p})+\frac{\partial}{\partial p^{j}}\left[B^{i j}(\mathbf{p}) f_{Q}(t, \mathbf{p})\right]\right\}}_{\equiv-J^{i}(t, \vec{p})}
$$

Approach to equilibrium in the FP equation

The FP equation can be viewed as a continuity equation for the phase-space distribution of the kind $\partial_{t} \rho(t, \vec{p})+\vec{\nabla}_{p} \cdot \vec{J}(t, \vec{p})=0$

$$
\frac{\partial}{\partial t} \underbrace{f_{Q}(t, \mathbf{p})}_{\equiv \rho(t, \vec{p})}=\frac{\partial}{\partial p^{i}} \underbrace{\left\{A^{i}(\mathbf{p}) f_{Q}(t, \mathbf{p})+\frac{\partial}{\partial p^{j}}\left[B^{i j}(\mathbf{p}) f_{Q}(t, \mathbf{p})\right]\right\}}_{\equiv-J^{i}(t, \vec{p})}
$$

admitting a steady solution $f_{\text {eq }}(p) \equiv e^{-E_{p} / T}$ when the current vanishes:

$$
A^{i}(\vec{p}) f_{\mathrm{eq}}(p)=-\frac{\partial B^{i j}(\vec{p})}{\partial p^{j}} f_{\mathrm{eq}}(p)-B^{i j}(\mathbf{p}) \frac{\partial f_{\mathrm{eq}}(p)}{\partial p^{j}} .
$$

Approach to equilibrium in the FP equation

The FP equation can be viewed as a continuity equation for the phase-space distribution of the kind $\partial_{t} \rho(t, \vec{p})+\vec{\nabla}_{p} \cdot \vec{J}(t, \vec{p})=0$

$$
\frac{\partial}{\partial t} \underbrace{f_{Q}(t, \mathbf{p})}_{\equiv \rho(t, \vec{p})}=\frac{\partial}{\partial p^{i}} \underbrace{\left\{A^{i}(\mathbf{p}) f_{Q}(t, \mathbf{p})+\frac{\partial}{\partial p^{j}}\left[B^{i j}(\mathbf{p}) f_{Q}(t, \mathbf{p})\right]\right\}}_{\equiv-J^{i}(t, \vec{p})}
$$

admitting a steady solution $f_{\text {eq }}(p) \equiv e^{-E_{p} / T}$ when the current vanishes:

$$
A^{i}(\vec{p}) f_{\mathrm{eq}}(p)=-\frac{\partial B^{i j}(\vec{p})}{\partial p^{j}} f_{\mathrm{eq}}(p)-B^{i j}(\mathbf{p}) \frac{\partial f_{\mathrm{eq}}(p)}{\partial p^{j}} .
$$

One gets

$$
A(p) p^{i}=\frac{B_{1}(p)}{T E_{p}} p^{i}-\frac{\partial}{\partial p^{j}}\left[\delta^{i j} B_{0}(p)+\hat{p}^{i} \hat{p}^{j}\left(B_{1}(p)-B_{0}(p)\right)\right],
$$

leading to the Einstein fluctuation-dissipation relation

$$
A(p)=\frac{B_{1}(p)}{T E_{p}}-\left[\frac{1}{p} \frac{\partial B_{1}(p)}{\partial p}+\frac{d-1}{p^{2}}\left(B_{1}(p)-B_{0}(p)\right)\right]
$$

quite involved due to the momentum dependence of the transport coefficients (measured HQ's are relativistic particles!)

The relativistic Langevin equation

The Fokker-Planck equation can be recast into a form suitable to follow the dynamics of each individual quark arising from the pQCD Monte Carlo simulation of the initial $Q \bar{Q}$ production: the Langevin equation

$$
\frac{\Delta p^{i}}{\Delta t}=-\underbrace{\eta_{D}(p) p^{i}}_{\text {determ. }}+\underbrace{\xi^{i}(t)}_{\text {stochastic }}
$$

with the properties of the noise encoded in

$$
\left\langle\xi^{i}\left(\mathbf{p}_{t}\right)\right\rangle=0 \quad\left\langle\xi^{i}\left(\mathbf{p}_{t}\right) \xi^{j}\left(\mathbf{p}_{t^{\prime}}\right)\right\rangle=b^{i j}(\mathbf{p}) \frac{\delta_{t t^{\prime}}}{\Delta t} \quad b^{i j}(\mathbf{p}) \equiv \kappa_{L}(p) \hat{p}^{i} \hat{p}^{j}+\kappa_{T}(p)\left(\delta^{i j}-\hat{p}^{i} \hat{p}^{j}\right)
$$

The relativistic Langevin equation

The Fokker-Planck equation can be recast into a form suitable to follow the dynamics of each individual quark arising from the pQCD Monte Carlo simulation of the initial $Q \bar{Q}$ production: the Langevin equation

$$
\frac{\Delta p^{i}}{\Delta t}=-\underbrace{\eta_{D}(p) p^{i}}_{\text {determ. }}+\underbrace{\xi^{i}(t)}_{\text {stochastic }}
$$

with the properties of the noise encoded in

$$
\left\langle\xi^{i}\left(\mathbf{p}_{t}\right)\right\rangle=0 \quad\left\langle\xi^{i}\left(\mathbf{p}_{t}\right) \xi^{j}\left(\mathbf{p}_{t^{\prime}}\right)\right\rangle=b^{i j}(\mathbf{p}) \frac{\delta_{t t^{\prime}}}{\Delta t} \quad b^{i j}(\mathbf{p}) \equiv \kappa_{L}(p) \hat{p}^{i} \hat{p}^{j}+\kappa_{T}(p)\left(\delta^{i j}-\hat{p}^{i} \hat{p}^{j}\right)
$$

Transport coefficients related to the FP ones:

- Momentum diffusion: $\kappa_{T}(p)=2 B_{0}(p)$ and $\kappa_{L}(p)=2 B_{1}(p)$
- Friction term, in the Ito pre-point discretization scheme,

$$
\eta_{D}^{\mathrm{Ito}}(p)=A(p)=\frac{B_{1}(p)}{T E_{p}}-\left[\frac{1}{p} \frac{\partial B_{1}(p)}{\partial p}+\frac{d-1}{p^{2}}\left(B_{1}(p)-B_{0}(p)\right)\right]
$$

Asymptotic approach to thermalization

- Left panel: evolution in a static medium
- Right panel: decoupling from expanding medium at $T_{\text {FO }}=160 \mathrm{MeV}$

For late times or for very large transport coefficients HQ's approach local kinetic equilibrium with the medium.
Figures adapted from Federica Capellino master thesis, awarded with Milla Baldo Ceolin and Alfredo Molinari INFN prizes.

Theory-to-data comparison: a snapshot of recent results

$$
R_{\mathrm{AA}} \equiv \frac{d N /\left.d p_{T}\right|_{\mathrm{AA}}}{\left\langle N_{\mathrm{coll}}\right\rangle d N /\left.d p_{T}\right|_{\mathrm{pp}}} \quad v_{n} \equiv\left\langle\cos \left[n\left(\phi-\Psi_{n}\right)\right]\right\rangle
$$

In spite of their large mass, also the D-mesons turn out to be quenched and to have a sizable v_{2}. Does also charm reach local thermal equilibrium? Transport calculations are challenged to consistently reproduce this rich phenomenology.

EBE fluctuations and D-meson v_{3}

sdens $\left(\mathrm{fm}^{-3}\right) 0-10 \% \mathrm{~Pb}-\mathrm{Pb}$ coll.

Transport calculations carried out in JHEP 1802 (2018) 043, with hydrodynamic background calculated via the ECHO-QGP code (EPJC 73
(2013) 2524) starting from Glauber Monte-Carlo initial conditions.

What do we want to learn? A bit of history...

Theory and experimental verification of brownian motion by Einstein (1905) and Perrin (1909)

From the vertical distribution of an emulsion

$$
n(z)=n_{0} e^{-\left(M g / K_{B} T\right) z}
$$

What do we want to learn? A bit of history...

Theory and experimental verification of brownian motion by Einstein (1905) and Perrin (1909)

From the vertical distribution of an emulsion

$$
n(z)=n_{0} e^{-\left(M g / K_{B} T\right) z}
$$

imposing the balance between gravity current

$$
j_{\text {grav }}^{z} \equiv n v^{z}=-n \frac{M g}{6 \pi a \eta}
$$

What do we want to learn? A bit of history...

Theory and experimental verification of brownian motion by Einstein (1905) and Perrin (1909)

From the vertical distribution of an emulsion

$$
n(z)=n_{0} e^{-\left(M g / K_{B} T\right) z}
$$

imposing the balance between gravity current

$$
j_{\text {grav }}^{z} \equiv n v^{z}=-n \frac{M g}{6 \pi a \eta}
$$

and diffusion current

$$
j_{\mathrm{diff}}^{z}=-D \frac{\partial n}{\partial z}=D \frac{M g}{K_{B} T} n
$$

What do we want to learn? A bit of history...

Theory and experimental verification of brownian motion by Einstein (1905) and Perrin (1909)

From the vertical distribution of an emulsion

$$
n(z)=n_{0} e^{-\left(M g / K_{B} T\right) z}
$$

imposing the balance between gravity current

$$
j_{\text {grav }}^{z} \equiv n v^{z}=-n \frac{M g}{6 \pi a \eta}
$$

and diffusion current

$$
j_{\mathrm{diff}}^{z}=-D \frac{\partial n}{\partial z}=D \frac{M g}{K_{B} T} n
$$

One gets an expression for the diffusion coefficient

$$
D=\frac{K_{B} T}{6 \pi a \eta}
$$

What do we want to learn? A bit of history...

From the random walk of the emulsion particles (follow the motion along one direction!) one extracts the diffusion coefficient

$$
\left\langle x^{2}\right\rangle \underset{t \rightarrow \infty}{\sim} 2 D t
$$

What do we want to learn? A bit of history...

From the random walk of the emulsion particles (follow the motion along one direction!) one extracts the diffusion coefficient

$$
\left\langle x^{2}>\underset{t \rightarrow \infty}{\sim} 2 D t\right.
$$

and from Einstein formula one estimates the Avogadro number:

$$
\mathcal{N}_{A} K_{B} \equiv \mathcal{R} \quad \longrightarrow \quad \mathcal{N}_{A}=\frac{\mathcal{R} T}{6 \pi a \eta D}
$$

Perrin obtained the values $\mathcal{N}_{\mathrm{A}} \approx 5.5-7.2 \cdot 10^{23}$.

What do we want to learn? A bit of history...

From the random walk of the emulsion particles (follow the motion along one direction!) one extracts the diffusion coefficient

$$
\left\langle x^{2}>\underset{t \rightarrow \infty}{\sim} 2 D t\right.
$$

and from Einstein formula one estimates the Avogadro number:

$$
\mathcal{N}_{A} K_{B} \equiv \mathcal{R} \quad \longrightarrow \quad \mathcal{N}_{A}=\frac{\mathcal{R} T}{6 \pi a \eta D}
$$

Perrin obtained the values $\mathcal{N}_{A} \approx 5.5-7.2 \cdot 10^{23}$. We would like to extract HQ transport coefficients in the QGP with a comparable precision!

HQ momentum diffusion: lattice-QCD

Getting the HQ momentum-diffusion coefficient requires to evaluate

$$
\begin{aligned}
& \kappa=\frac{1}{3} \int_{-\infty}^{+\infty} d t\left\langle\xi^{i}(t) \xi^{i}(0)\right\rangle_{\mathrm{HQ}}=\frac{1}{3} \int_{-\infty}^{+\infty} d t \underbrace{\left\langle F^{i}(t) F^{i}(0)\right\rangle_{\mathrm{HQ}}}_{\equiv D^{>}(t)} \\
& \text { where } \quad \mathbf{F}(t)=\int d \mathbf{x} Q^{\dagger}(t, \mathbf{x}) t^{a} Q(t, \mathbf{x}) \mathbf{E}^{a}(t, \mathbf{x})
\end{aligned}
$$

HQ momentum diffusion: lattice-QCD

Getting the HQ momentum-diffusion coefficient requires to evaluate

$$
\begin{array}{r}
\kappa=\frac{1}{3} \int_{-\infty}^{+\infty} d t\left\langle\xi^{i}(t) \xi^{i}(0)\right\rangle_{\mathrm{HQ}}=\frac{1}{3} \int_{-\infty}^{+\infty} d t \underbrace{\left\langle F^{i}(t) F^{i}(0)\right\rangle_{\mathrm{HQ}}}_{\equiv D^{>}(t)} \\
\text { where } \quad \mathbf{F}(t)=\int d \mathbf{x} Q^{Q^{\dagger}(t, \mathbf{x}) t^{a} Q(t, \mathbf{x}) \mathbf{E}^{a}(t, \mathbf{x})} .
\end{array}
$$

From the lattice one can get only the euclidean correlator $(t=-i \tau)$

$$
D_{E}(\tau)=-\frac{\left\langle\operatorname{Re} \operatorname{Tr}\left[U(\beta, \tau) g E^{i}(\tau, \mathbf{0}) U(\tau, 0) g E^{i}(0, \mathbf{0})\right]\right\rangle}{\langle\operatorname{Re} \operatorname{Tr}[U(\beta, 0)]\rangle}
$$

How to proceed?

HQ momentum diffusion: lattice-QCD

Getting the HQ momentum-diffusion coefficient requires to evaluate

$$
\begin{aligned}
\kappa=\frac{1}{3} \int_{-\infty}^{+\infty} d t\left\langle\xi^{i}(t) \xi^{i}(0)\right\rangle_{\mathrm{HQ}} & =\frac{1}{3} \int_{-\infty}^{+\infty} d t \underbrace{\left\langle F^{i}(t) F^{i}(0)\right\rangle_{\mathrm{HQ}}}_{\equiv D^{>}(t)} \\
\text { where } \quad \mathbf{F}(t) & =\int d \mathbf{x} Q^{\dagger}(t, \mathbf{x}) t^{a} Q(t, \mathbf{x}) \mathbf{E}^{a}(t, \mathbf{x})
\end{aligned}
$$

From the lattice one can get only the euclidean correlator $(t=-i \tau)$

$$
D_{E}(\tau)=-\frac{\left\langle\operatorname{Re} \operatorname{Tr}\left[U(\beta, \tau) g E^{i}(\tau, \mathbf{0}) U(\tau, 0) g E^{i}(0, \mathbf{0})\right]\right\rangle}{\langle\operatorname{Re} \operatorname{Tr}[U(\beta, 0)]\rangle}
$$

How to proceed? κ comes from the $\omega \rightarrow 0$ limit of the FT of $D^{>}$. In a thermal ensemble $\sigma(\omega) \equiv D^{>}(\omega)-D^{<}(\omega)=\left(1-e^{-\beta \omega}\right) D^{>}(\omega)$, so that

$$
\kappa \equiv \lim _{\omega \rightarrow 0} \frac{D^{>}(\omega)}{3}=\lim _{\omega \rightarrow 0} \frac{1}{3} \frac{\sigma(\omega)}{1-e^{-\beta \omega}} \underset{\omega \rightarrow 0}{\sim} \frac{1}{3} \frac{T}{\omega} \sigma(\omega)
$$

HQ momentum diffusion: lattice-QCD

Getting the HQ momentum-diffusion coefficient requires to evaluate

$$
\begin{array}{r}
\kappa=\frac{1}{3} \int_{-\infty}^{+\infty} d t\left\langle\xi^{i}(t) \xi^{i}(0)\right\rangle_{\mathrm{HQ}}=\frac{1}{3} \int_{-\infty}^{+\infty} d t \underbrace{\left\langle F^{i}(t) F^{i}(0)\right\rangle_{\mathrm{HQ}}}_{\equiv D^{>}(t)} \\
\text { where } \quad \mathbf{F}(t)=\int d \mathbf{x} Q^{Q^{\dagger}(t, \mathbf{x}) t^{a} Q(t, \mathbf{x}) \mathbf{E}^{a}(t, \mathbf{x})} .
\end{array}
$$

From the lattice one can get only the euclidean correlator $(t=-i \tau)$

$$
D_{E}(\tau)=-\frac{\left\langle\operatorname{Re} \operatorname{Tr}\left[U(\beta, \tau) g E^{i}(\tau, \mathbf{0}) U(\tau, 0) g E^{i}(0, \mathbf{0})\right]\right\rangle}{\langle\operatorname{Re} \operatorname{Tr}[U(\beta, 0)]\rangle}
$$

How to proceed? κ comes from the $\omega \rightarrow 0$ limit of the FT of $D^{>}$. In a thermal ensemble $\sigma(\omega) \equiv D^{>}(\omega)-D^{<}(\omega)=\left(1-e^{-\beta \omega}\right) D^{>}(\omega)$, so that

$$
\kappa \equiv \lim _{\omega \rightarrow 0} \frac{D^{>}(\omega)}{3}=\lim _{\omega \rightarrow 0} \frac{1}{3} \frac{\sigma(\omega)}{1-e^{-\beta \omega}} \underset{\omega \rightarrow 0}{\sim} \frac{1}{3} \frac{T}{\omega} \sigma(\omega)
$$

From $D_{E}(\tau)$ one extracts the spectral density according to

$$
D_{E}(\tau)=\int_{0}^{+\infty} \frac{d \omega}{2 \pi} \frac{\cosh (\tau-\beta / 2)}{\sinh (\beta \omega / 2)} \sigma(\omega)
$$

HQ momentum diffusion: lattice-QCD

The direct extraction of the spectral density from the euclidean correlator

$$
D_{E}(\tau)=\int_{0}^{+\infty} \frac{d \omega}{2 \pi} \frac{\cosh (\tau-\beta / 2)}{\sinh (\beta \omega / 2)} \sigma(\omega)
$$

is a ill-posed problem, since the latter is known for a limited set (~ 20) of points $D_{E}\left(\tau_{i}\right)$, and one wishes to obtain a fine scan of the the spectral function $\sigma\left(\omega_{j}\right)$. A direct χ^{2}-fit is not applicable.

HQ momentum diffusion: lattice-QCD

The direct extraction of the spectral density from the euclidean correlator

$$
D_{E}(\tau)=\int_{0}^{+\infty} \frac{d \omega}{2 \pi} \frac{\cosh (\tau-\beta / 2)}{\sinh (\beta \omega / 2)} \sigma(\omega)
$$

is a ill-posed problem, since the latter is known for a limited set (~ 20) of points $D_{E}\left(\tau_{i}\right)$, and one wishes to obtain a fine scan of the the spectral function $\sigma\left(\omega_{j}\right)$. A direct χ^{2}-fit is not applicable. Possible strategies:

- Bayesian techniques (Maximum Entropy Method)

HQ momentum diffusion: lattice-QCD

The direct extraction of the spectral density from the euclidean correlator

$$
D_{E}(\tau)=\int_{0}^{+\infty} \frac{d \omega}{2 \pi} \frac{\cosh (\tau-\beta / 2)}{\sinh (\beta \omega / 2)} \sigma(\omega)
$$

is a ill-posed problem, since the latter is known for a limited set (~ 20) of points $D_{E}\left(\tau_{i}\right)$, and one wishes to obtain a fine scan of the the spectral function $\sigma\left(\omega_{j}\right)$. A direct χ^{2}-fit is not applicable. Possible strategies:

- Bayesian techniques (Maximum Entropy Method)
- Theory-guided ansatz for the behaviour of $\sigma(\omega)$ to constrain its functional form (A. Francis et al., PRD 92 (2015), 116003)

From the different ansatz on the functional form of $\sigma(\omega)$ one gets a systematic uncertainty band:

$$
\kappa / T^{3} \approx 1.8-3.4
$$

From momentum broadening to spatial diffusion

In the non-relativistic limit an excess of HQ's initially placed at the origin will diffuse according to

$$
\left\langle\vec{x}^{2}(t)\right\rangle \underset{t \rightarrow \infty}{\sim} 6 D_{s} t \quad \text { with } \quad D_{S}=\frac{2 T^{2}}{\kappa}
$$

For a strongly interacting system spatial diffusion is very small! Theory calculations for D_{s} have been collected (F. Prino and R. Rapp, JPG 43 (2016) 093002) and are often used by the experimentalists to summarize the difference among the various models

From momentum broadening to spatial diffusion

In the non-relativistic limit an excess of HQ's initially placed at the origin will diffuse according to

$$
\left\langle\vec{x}^{2}(t)\right\rangle \underset{t \rightarrow \infty}{\sim} 6 D_{s} t \quad \text { with } \quad D_{S}=\frac{2 T^{2}}{\kappa}
$$

For a strongly interacting system spatial diffusion is very small! Theory calculations for D_{s} have been collected (F. Prino and R. Rapp, JPG 43 (2016) 093002) and are often used by the experimentalists to summarize the difference among the various models BUT

- $D_{s}(c) \neq D_{s}(b)$: experimental situation still a bit far from the $(M / T) \rightarrow \infty$ limit

From momentum broadening to spatial diffusion

In the non-relativistic limit an excess of HQ's initially placed at the origin will diffuse according to

$$
\left\langle\vec{x}^{2}(t)\right\rangle \underset{t \rightarrow \infty}{\sim} 6 D_{s} t \quad \text { with } \quad D_{S}=\frac{2 T^{2}}{\kappa}
$$

For a strongly interacting system spatial diffusion is very small! Theory calculations for D_{s} have been collected (F. Prino and R. Rapp, JPG 43 (2016) 093002) and are often used by the experimentalists to summarize the difference among the various models BUT

- $D_{s}(c) \neq D_{s}(b)$: experimental situation still a bit far from the $(M / T) \rightarrow \infty$ limit
- Momentum dependence plays a major role for charm

From momentum broadening to spatial diffusion

In the non-relativistic limit an excess of HQ's initially placed at the origin will diffuse according to

$$
\left\langle\vec{x}^{2}(t)\right\rangle \underset{t \rightarrow \infty}{\sim} 6 D_{s} t \quad \text { with } \quad D_{S}=\frac{2 T^{2}}{\kappa}
$$

For a strongly interacting system spatial diffusion is very small! Theory calculations for D_{s} have been collected (F. Prino and R. Rapp, JPG 43 (2016) 093002) and are often used by the experimentalists to summarize the difference among the various models BUT

- $D_{s}(c) \neq D_{s}(b)$: experimental situation still a bit far from the $(M / T) \rightarrow \infty$ limit
- Momentum dependence plays a major role for charm

Are $p p$ collisions really a reference?

May a small fireball be produced also in (high-multiplicity) pp events?

- Baryon-to-meson ratio different from $e^{+} e^{-}$FF: breaking of factorization!

Are $p p$ collisions really a reference?

May a small fireball be produced also in (high-multiplicity) $p p$ events?

- Baryon-to-meson ratio different from $e^{+} e^{-}$FF: breaking of factorization!
- Models including the possibility of HQ coalescence with light thermal partons seem able to reproduce the data (V . Minissale et al., Phys.Lett.B 821 (2021) 136622)

