INFN

: : openstack
Working with OpenStack [IEEEER

«OpenStack Dashboard & OpenStackClient»

«OpenStack Administration 101», 30 Nov. - 3 Dec. 2021
Doina Cristina Duma & Alessandro Costantini

29/11/2021

* OpenStack Dashboard - aka Horizon
* What it is & what it is used for

* Main tabs/modules

OverVieW - OpenStack Client

* Hands-on

(IR

Graphical user interface
DASHBOARD SERVICE

I 17
o o

G mmmmm—————

High-level

Overview of
Core Services

> @

E%

rrrT

IDENTITY OPENSTACK BLOCK COMPUTE IMAGE OBJECT TELEMETRY
SERVICE NETWORKING STORAGE SERVICE STORAGE STORAGE SERVICE
SERVICE SERVICE SERVICE SERVICE
o m e oo e - e e PR >
Persistent storage Stores images Stores images
| as objects
Network connectivity Stores objects for VMs

Collects usage statistics

(IR

Horizon NN

- The Horizon project, also known as the OpenStack Dashboard, provides a_ web based user
interface to an OpenStack cloud for both cloud operators/administrators and those who
access and use the cloud's resources.

- designed to be easily skin-able so that OpenStack software vendors and possibly even the cloud
operators can change the look of the dashboard for their users.

* Docs

+ Django-based application that provides access to OpenStack services
* Typically deployed as an Apache WSGI application

E openstack. [TRAINING « sdds ~

* Leverages well known existing technologies - Bootstrap, jQuery, AngularJS .. .

Project / Compute / Overview

* First appeared in OpenStack 'Essex' release ONBHEW
nnnnnnnnn Limit Summary
Depends on

Use u 500 u 4TB
Networ >
Volume
Orchestration > '
Admin >
Volume Snapshots me Storage
Used 0 of

Keystone —_——

https://docs.openstack.org/horizon/latest/
https://releases.openstack.org/teams/horizon.html

Horizon Basics <R

“Think simple” => make it easy => features
+ Core Support: Out-of-the-box support for all core OpenStack projects. It ships with:

- three central dashboards, a “User Dashboard”, a_“System Dashboard”, and a_“Settings” dashboard. Between these
three they cover the core OpenStack applications and deliver on Core Support.

+ a set of API abstractions for the core OpenStack projects in order to provide a consistent, stable set of reusable
methods for developers

Extensible: Anyone can add a new component as a “first-class citizen”.

* based around the class that provides a consistent APl and set of capabilities for core OpenStack
dashboard apps and also third-party apps

Manageable: The core codebase should be simple and easy-to-navigate.
Consistent: Visual and interaction paradigms are maintained throughout apps.
* providing the necessary core classes to build from, as well as a solid set of reusable templates
- Stable: A reliable API with an emphasis on backwards-compatibility.
+ Usable: Providing an awesome interface that people want to use.

O A& 101005 . B .
User Dashboard
openstack. @ acmin - P
>
Admin Dashboard

Project / Compute / Overview @ Help
> & OpenStack RC File

s Overview

Identity

Themes:

https://docs.openstack.org/horizon/latest/contributor/ref/horizon.html

Horizon Components & Architecture <R

Component Description

openstack-dashboard Django Web application that provides access to the dashboard
from any Web browser.

Apache HTTP server (httpd service) Hosts the application.
1 O O
—OW
* The OpenStack ldentity service authenticates and
authorizes users
* The session backend provides database services l
- The httpd service hosts the Web application and all S P [
other OpenStack services for API calls s

(ex. memcached)
services API calls T

Image Service Compute Service Other Services

Installation & Configuration guide (hints) (R

The only core service required by the dashboard is the Identity service

Requirements:

* Python (3.6/3.7)

* Django (2.2)

- Keystone endpoint - if available, it is automatically detected.

 Other services via plugins, available in

Installation:

- Notel: a proper installation, configuration, and operation of the Identity service using the
Apache HTTP server and Memcached service is needed

- Note2: Default configuration files vary with distribution

- Steps:

1. Install the packages:
yum install openstack-dashboard

https://docs.openstack.org/horizon/wallaby/install/plugin-registry.html

Installation & configuration guide (hints) (R

ALLOWED_HOSTS = ['one.example.com', 'two.example.com']

Installation:

- Steps:
2. Edit the /etc/openstack-dashboard/local settings:

+ Configure the dashboard to use OpenStack services on the_controller

node:
+ Allow your hosts to access the dashboard
* ALLOWED_HOSTS can also be [**'] to accept all hosts
+ Configure the memcached session storage service
+ Enable the Identity API version 3:**
+ Enable support for domains:**
+ Configure APl versions**

+ Configure Default as the default domain for users that you create via

the dashboard

+ Configure user as the default role for users that you create via the

dashboard:***
- disable support for layer-3 networking services

3. Edit /etc/httpd/conf.d/openstack-dashboard.conf and set:
WSGIApplicationGroup %{GLOBAL}

systemctl restart httpd.service memcached.service

SESSION_ENGINE 'django.contrib.sessions.backends.cache"

CACHES = {
‘default':
'BACKEND': "'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': 'controller:11211°,

OPENSTACK_KEYSTONE_URL = "http://%s/identity/v3" % OPENSTACK_HOST

OPENSTACK_API_VERSIONS = {
"identity": 3,
"image": 2,

"volume": 3,

OPENSTACK_KEYSTONE_DEFAULT_DOMAIN = "Default"™

OPENSTACK_KEYSTONE_DEFAULT_ROLE = "user™

OPENSTACK_NEUTRON_NETWORKEEEES

}

'enable_distributed_router': False,
'enable_ha_router': False,
'enable_lb': False,
'enable_quotas': True,
'enable_security_group': True,
'enable_vpn': False,

Navigation through OpenStack Dashboard CNeN

* Log in to the Dashboard -
- Admin and/or user (private browsing) - the visible tabs and functions in the dashboard depend on
the access permissions, or roles

* If you are logged in as an end user, the Project tab and Identity tab are displayed.

* If you are logged in as an administrator, the Project tab and Admin tab and ldentity are displayed.
- Project tab (leys’s explore it together)

* Projects are organizational units in the cloud and are also known as_tenants.

* Each user is a member of one or more projects.

+ Within a project, a user creates and manages instances
- Admin tab (leys’s explore it together)

+ Allows to view usage and to manage instances, volumes, flavors, images, networks,
- ldentity tab:

+ User => Project, Users, Application Credentials

+ Admin => Domains, Projects, Users, Groups, Roles
- Settings tab:

* User Settings, Change Password

We stop here with the Dashboard => will follow
the hands-on on creating all the elements needed
for launching an instance

http://ipaddress_of_oa101-0x-ctrl/

OpenStack Command Line Clients

« Python command line clients for managing OpenStack services
« Can use rc files to provide endpoint and authentication

« Communicate with each project's APIs

* Typically all are installed on Controller nodes

- Can be installed and run on any Linux machine

Project Client Name
Keystone python-keystoneclient
Glance python-glanceclient
Cinder python-cinderclient
Nova python-novaclient
Neutron python-neutronclient
Swift python-swiftclient
Heat python-heatclient

Ceilometer python-ceilometerclient

Command
keystone
glance
cinder
nova
neutron
swift

heat
ceilometer

(IR

OpenStackClient % NN

Project Specific Clients
keystone ~
glance
cinder
nova
neutron > openstack
swift
heat

ceilometer

+ OpenStackClient (aka OSC) is a command-line client for OpenStack that brings the command set for Compute,

Identity, Image, Object Storage and Block Storage APIs together in a single shell with a uniform command structure.

The openstack command combines most of the features of the project specific CLI client into a single CLI client

Although most of the project specific command functionality can be replicated with the_openstack command, there are some
gaps.

There is documentation that shows the mapping between project specific commands and the_openstack command. The map
is located at: https://docs.openstack.org/python-openstackclient/latest/cli/decoder.html

+ Goals

Use the OpenStack Python API libraries, extending or replacing them as required
Use a consistent naming and structure for commands and arguments
Provide consistent output formats with optional machine parseable formats

Use a single-binary approach that also contains an embedded shell that can execute multiple commands on a single
authentication

Independence from the OpenStack project names; only APl names are referenced (to the extent possible)

https://docs.openstack.org/python-openstackclient/latest/cli/decoder.html

OpenStackClient NN

* |nstallation:

* Ensure you have the proper repository for the Openstack version of your cloud infrastructure, for ex.
centos-release-openstack-wallaby-1-1.el8.noarch

* Install using "yum install python-openstackclient”

+ Configuration, various methods:
 Primarily configured using command line options and environment variables

* There is a relationship between the global options, environment variables and keywords used in the
configuration files that should make translation between these three areas simple
- global options have a corresponding environment variable that may also be used to set the value
- If both are present, the command-line option takes priority

* environment variable names are derived from the option name by dropping the leading dashes (-), converting
each embedded dash (-) to an underscore (_), and converting to upper case

 keyword names in the configurations files are derived from the global option names by_dropping the —-0s- prefix if
present

--os-cloud <cloud-config-name>
Cloud name in clouds.yaml (Env: 0S_CLOUD)

--0s-region-name <auth-region-name>
Authentication region name (Env: OS_REGION_NAME)

<R

OpenStackClient

+ Configuration, various methods: ST

devstack:

* Most of the settings can also be placed into a configuration file to simplify auth:
. . . . auth_url: http://192.168.122.10:5000/
managing multiple cloud configurations: project_nane: deno
* clouds.yaml, - contains everything needed to connect to one or more clouds. e

ds—admin:

may contain private information and is generally considered private to a user. auth:
auth_url: http://192.168.122.10:5000/
Locations (first found wins!) project_nams: _admin
username: admin
* current directory password: @penstack
region_name: RegionOne
o« ~ i infra:
-/.config/openstack e \iod recsnace

auth:

+ /etc/openstack project_id: 275610
- .. - - . username: openstack

- clouds-public.yaml - is intended to contain public information about clguCs that are password xyzpdallazyog
common across a large number of users. e e

could easily be shared among users to simplify public cloud config

+ Same as above for the locations
public-clouds:
rackspace:
auth:
auth_url: 'https://identity.api.rackspacecloud.com/v2.0/'

—os-auth-url https://identity.api.rackspacecloud.com/v2.0/

—o0s—-project-id 275610

——o0s—username openstack .

—os—-password xyzpdq! lazydog openstack ——os-cloud infra server
——o0s—-region-name DFW

—os-interface internal

OpenStack Client % NN

Logging settings: clouds:

devstack:
ENGH

 For the multiple clouds (accounts) case (clouds.yaml), set log file, log_leve auth_url: http://

project_name: demo

. ila- ile- username: demo
log_file: </path/file-name> e e
- Full path to logging file. LEalen - 0anei-Rclonine
. logging: TRUE
° Iog_level: error | |nf0 | debug file: /tmp/openstackclient_demo. log
level: info
- If log level is not set, warning will be used
- When a command is executed, these logs are saved every time e

username: admin
password: “penstack
i ~ Rae 1 . o

- If saving the output of a single command use the - -log-file option instead.

ea1on _name: Keglionin
log_file: /tmp/openstackclient_admin. log

° —Iog-ﬁle <LOG_FILE> log_level: debug

* The logging level for - - log-file can be set by using following options.
* -v, —verbose
* -q, —quiet
« —-debug

Understand OpenStack Credentials (rc) files

Important OpenStack Environment Variables

Variable
0S_AUTH_URL
OS_AUTH_VERSION

OS_IDENTITY_API_VERSION
OS_PROJECT_DOMAIN_NAME
OS_USER_DOMAIN_NAME
OS_PROJECT_NAME

OS_USERNAME
OS_PASSWORD

Description

-URL of Keystone API

-Identity API version to use for
authentication

-Identity API version to use for Identity
operations

-Name of domain that the project is a
member of

-Name of the domain the useris a
member of

-Name of project the user is in
-Name of the OpenStack User
-Password for the OpenStack User

<R

Example OpenStack RC Files

Downloadable

#!/usr/bin/env bash

To use an OpenStack cloud you need to authenticate against the Identity
service named keystone, which returns a xxTokenxx and xxService Catalogxx.
The catalog contains the endpoints for all services the user/tenant has
access to - such as Compute, Image Service, Identity, Object Storage, Block
Storage, and Networking (code-named nova, glance, keystone, swift,

cinder, and neutron).

*NOTEx: Using the 3 xIdentity APIx does not necessarily mean any other
OpenStack API is version 3. For example, your cloud provider may implement
Image API v1.1, Block Storage API v2, and Compute API v2.0. OS_AUTH_URL is
only for the Identity API served through keystone.

export OS_AUTH_URL=http://controller@1.example.com:5000/v3/

HOHH ¥ HHHHHEHH

With the addition of Keystone we have standardized on the term xxprojectx
as the entity that owns the resources.

export OS_PROJECT_ID=6@efdd2f1f8d440491c2612c0@e38bdec

export OS_PROJECT_NAME="admin"

export OS_USER_DOMAIN_NAME="Default"

if [-z "$0S_USER_DOMAIN_NAME"]; then unset OS_USER_DOMAIN_NAME; fi

unset v2.0 items in case set
unset OS_TENANT_ID
unset OS_TENANT_NAME

In addition to the owning entity (tenant), OpenStack stores the entity
performing the action as the xxuserkx.
export OS_USERNAME="admin"

With Keystone you pass the keystone password.

echo "Please enter your OpenStack Password for project $0S_PROJECT_NAME as user $OS_USERNAME: "
read -sr OS_PASSWORD_INPUT

export OS_PASSWORD=$0S_PASSWORD_INPUT

If your configuration has multiple regions, we set that information here.
OS_REGION_NAME is optional and only valid in certain environments.
export OS_REGION_NAME="RegionOne"

Don't leave a blank variable, unset it if it was empty

if [-z "$OS_REGION_NAME"]; then unset OS_REGION_NAME; fi

export OS_INTERFACE=public
export OS_IDENTITY_API_VERSION=3

#!/usr/

unset O
unset O
unset O
unset O
unset O
unset O
unset O
export
export
export
export
export
export
export
export

echo "E
read -s
export

if open
then
echo
expor
else
echo
expor
unset
unset
unset
unset
unset
unset
unset
unset
unset
unset
fi

Custom

bin/env bash

S_TENANT_ID

S_TENANT_NAME

S_PROJECT_ID

S_PROJECT_NAME

S_DOMAIN_ID

S_DOMAIN_NAME

S_REGION_NAME
OS_AUTH_URL=http://controller@1:5000/v3/
OS_AUTH_VERSION=3
OS_IDENTITY_API_VERSION=3
OS_PROJECT_DOMAIN_NAME="Default"
OS_USER_DOMAIN_NAME="Default"
OS_REGION_NAME="RegionOne"
OS_PROJECT_NAME="acme"
OS_USERNAME="acmeuser"

nter the OpenStack password for the user: ${OS_USERNAME}"
r OS_PASSWORD_INPUT

0S_PASSWORD=${0S_PASSWORD_INPUT}

stack token issue &> /dev/null

"Authentication Successful"

£ PS1="\u@\h: [${0S_USERNAME}@${0S_PROJECT_DOMAIN_NAME}/${OS_PROJECT_NAME} (v3)]\w> "

"Authentication Failed"
t PS1="\u@\h:\w>"
OS_AUTH_URL
OS_IDENTITY_API_VERSION
OS_AUTH_VERSION
0S_PROJECT_DOMAIN_NAME
OS_USER_DOMAIN_NAME
OS_REGION_NAME
OS_PROJECT_ID
0S_PROJECT_NAME
OS_USERNAME
0S_PASSWORD

Client -
(Cloud Customer) \/
€ ,

l Request: Start

Instance
aO [Web Interface)

Hands-on M=
i a>
I &= j\ o

Compute)
nova compute
- "‘(Network)

neutron
/

Storage
cinder

oy

VM creation

l
|
|
|
|
|

| @duelsu|

(IR

https://corso_oa101.baltig-pages.infn.it/hands-on/

 https://docs.openstack.org/horizon/wallaby/

References

- https://docs.openstack.org/python-openstackclient/latest/

(IR

https://docs.openstack.org/horizon/wallaby/
https://docs.openstack.org/python-openstackclient/latest/

