
Working with OpenStack
«OpenStack Dashboard & OpenStackClient»

«OpenStack Administration 101» , 30 Nov. – 3 Dec. 2021
Doina Cristina Duma & Alessandro Costantini

29/11/2021

Overview

� OpenStack Dashboard – aka Horizon
� What it is & what it is used for
� Main tabs/modules

� OpenStack Client

� Hands-on

High-level
Overview of

Core Services

Horizon
� The Horizon project, also known as the OpenStack Dashboard, provides a web based user

interface to an OpenStack cloud for both cloud operators/administrators and those who
access and use the cloud's resources.

� designed to be easily skin-able so that OpenStack software vendors and possibly even the cloud
operators can change the look of the dashboard for their users.

� Docs
� Latest code source release

� Django-based application that provides access to OpenStack services
� Typically deployed as an Apache WSGI application
� Leverages well known existing technologies – Bootstrap, jQuery, AngularJS

� First appeared in OpenStack 'Essex' release

https://docs.openstack.org/horizon/latest/
https://releases.openstack.org/teams/horizon.html

Horizon Basics

User Dashboard

Admin Dashboard

“Think simple” => make it easy => features
� Core Support: Out-of-the-box support for all core OpenStack projects. It ships with:

� three central dashboards, a “User Dashboard”, a “System Dashboard”, and a “Settings” dashboard. Between these
three they cover the core OpenStack applications and deliver on Core Support.

� a set of API abstractions for the core OpenStack projects in order to provide a consistent, stable set of reusable
methods for developers

� Extensible: Anyone can add a new component as a “first-class citizen”.
� based around the Dashboard class that provides a consistent API and set of capabilities for core OpenStack

dashboard apps and also third-party apps
� Manageable: The core codebase should be simple and easy-to-navigate.
� Consistent: Visual and interaction paradigms are maintained throughout apps.

� providing the necessary core classes to build from, as well as a solid set of reusable templates
� Stable: A reliable API with an emphasis on backwards-compatibility.
� Usable: Providing an awesome interface that people want to use.

https://docs.openstack.org/horizon/latest/contributor/ref/horizon.html

Horizon Components & Architecture

� The OpenStack Identity service authenticates and
authorizes users

� The session backend provides database services

� The httpd service hosts the Web application and all
other OpenStack services for API calls

Installation & Configuration guide (hints)
The only core service required by the dashboard is the Identity service

Requirements:

� Python (3.6/3.7)

� Django (2.2)

� Keystone endpoint – if available, it is automatically detected.

� Other services via plugins, available in Plugin Registry.

Installation:

� Note1: a proper installation, configuration, and operation of the Identity service using the
Apache HTTP server and Memcached service is needed

� Note2: Default configuration files vary with distribution

� Steps:
1. Install the packages:

https://docs.openstack.org/horizon/wallaby/install/plugin-registry.html

Installation & configuration guide (hints)
Installation:
� Steps:

2. Edit the /etc/openstack-dashboard/local_settings:
� Configure the dashboard to use OpenStack services on the controller

node:
� Allow your hosts to access the dashboard

� ALLOWED_HOSTS can also be [‘*’] to accept all hosts
� Configure the memcached session storage service
� Enable the Identity API version 3:**
� Enable support for domains:**
� Configure API versions**
� Configure Default as the default domain for users that you create via

the dashboard
� Configure user as the default role for users that you create via the

dashboard:***
� disable support for layer-3 networking services

3. Edit /etc/httpd/conf.d/openstack-dashboard.conf and set:

4. Restart the web server and session storage service:

Navigation through OpenStack Dashboard
� Log in to the Dashboard – http://ipAddress_of_oa101-0X-ctrl/

� Admin and/or user (private browsing) - the visible tabs and functions in the dashboard depend on
the access permissions, or roles

� If you are logged in as an end user, the Project tab and Identity tab are displayed.
� If you are logged in as an administrator, the Project tab and Admin tab and Identity are displayed.

� Project tab (leys’s explore it together)
� Projects are organizational units in the cloud and are also known as tenants.
� Each user is a member of one or more projects.
� Within a project, a user creates and manages instances

� Admin tab (leys’s explore it together)
� Allows to view usage and to manage instances, volumes, flavors, images, networks,

� Identity tab:
� User => Project, Users, Application Credentials
� Admin => Domains, Projects, Users, Groups, Roles

� Settings tab:
� User Settings, Change Password

We stop here with the Dashboard => will follow
the hands-on on creating all the elements needed

for launching an instance

http://ipaddress_of_oa101-0x-ctrl/

OpenStack Command Line Clients
� Python command line clients for managing OpenStack services

� Can use rc files to provide endpoint and authentication

� Communicate with each project's APIs

� Typically all are installed on Controller nodes

� Can be installed and run on any Linux machine

OpenStackClient

� OpenStackClient (aka OSC) is a command-line client for OpenStack that brings the command set for Compute,
Identity, Image, Object Storage and Block Storage APIs together in a single shell with a uniform command structure.

� The openstack command combines most of the features of the project specific CLI client into a single CLI client
� Although most of the project specific command functionality can be replicated with the openstack command, there are some

gaps.
� There is documentation that shows the mapping between project specific commands and the openstack command. The map

is located at: https://docs.openstack.org/python-openstackclient/latest/cli/decoder.html

� Goals
� Use the OpenStack Python API libraries, extending or replacing them as required
� Use a consistent naming and structure for commands and arguments
� Provide consistent output formats with optional machine parseable formats
� Use a single-binary approach that also contains an embedded shell that can execute multiple commands on a single

authentication
� Independence from the OpenStack project names; only API names are referenced (to the extent possible)

https://docs.openstack.org/python-openstackclient/latest/cli/decoder.html

OpenStackClient
� Installation:

� Ensure you have the proper repository for the Openstack version of your cloud infrastructure, for ex.
centos-release-openstack-wallaby-1-1.el8.noarch

� Install using ”yum install python-openstackclient”

� Configuration, various methods:
� Primarily configured using command line options and environment variables
� There is a relationship between the global options, environment variables and keywords used in the

configuration files that should make translation between these three areas simple
� global options have a corresponding environment variable that may also be used to set the value
� If both are present, the command-line option takes priority
� environment variable names are derived from the option name by dropping the leading dashes (–), converting

each embedded dash (-) to an underscore (_), and converting to upper case
� keyword names in the configurations files are derived from the global option names by dropping the --os- prefix if

present

OpenStackClient
� Configuration, various methods:

� Most of the settings can also be placed into a configuration file to simplify
managing multiple cloud configurations:

� clouds.yaml, - contains everything needed to connect to one or more clouds.
� may contain private information and is generally considered private to a user.
� Locations (first found wins!)

� current directory
� ~/.config/openstack
� /etc/openstack

� clouds-public.yaml - is intended to contain public information about clouds that are
common across a large number of users.

� could easily be shared among users to simplify public cloud configuration
� Same as above for the locations

OpenStack Client
Logging settings:

� For the multiple clouds (accounts) case (clouds.yaml), set log_file, log_level
� log_file: </path/file-name>

� Full path to logging file.
� log_level: error | info | debug

� If log level is not set, warning will be used
� When a command is executed, these logs are saved every time

� If saving the output of a single command use the - -log-file option instead.
� –log-file <LOG_FILE>

� The logging level for - - log-file can be set by using following options.
� -v, –verbose
� -q, –quiet
� –debug

Understand OpenStack Credentials (rc) files

Example OpenStack RC Files
Downloadable Custom

Hands-on
time

VM creation

https://corso_oa101.baltig-pages.infn.it/hands-on/

https://corso_oa101.baltig-pages.infn.it/hands-on/

References � https://docs.openstack.org/horizon/wallaby/

� https://docs.openstack.org/python-openstackclient/latest/

https://docs.openstack.org/horizon/wallaby/
https://docs.openstack.org/python-openstackclient/latest/

