FROM PLANK TO THE FUTURE OF CMB

FERRARA - MAY 2022

ON BEHALF OF THE PASIPHAE COLLABORATION

INSTITUTE OF ASTROPHYSICS — FORTH, PHYSICS DEPARTMENT UNIV. CRETE HERAKLION, GREECE

THE FIRST LARGE-SCALE SURVEY OF OPTICAL STARLIGHT POLARIZATION AT HIGH AND INTERMEDIATE GALACTIC LATITUDES

Mapping dust polarized emission in 3D

 \blacktriangleright Absorption \leftrightarrow Emission conversion

V. Pelgrims

THE FIRST LARGE-SCALE SURVEY OF OPTICAL STARLIGHT POLARIZATION AT HIGH AND INTERMEDIATE GALACTIC LATITUDES

Mapping dust polarized emission in 3D

V. Pelgrims

- Existence of dust SED variations and non-uniform magnetic field orientation
 - induce (LOS-)frequency decorrelation of dust polarization
 - complicate frequency extrapolation for foregrounds' removal
 - Dust SEDs vary across the sky (T, K)
 [e.g. Finkbeiner+99; Planck (XI 14; IV 20);
 Irfan+19]

 SEDs vary along LOSs leading to LOS *v*-decorrelation from dust clouds [Tassis & Pavlidou 2015]

 SEDs vary along <u>certain</u> LOSs leading to LOS ν-decorrelation from dust clouds [Pelgrims, Clark, Hensley, Panopoulou et al. 2021]

Sightline selection using HI data

#cloud from [Panopoulou & Lenz 2020] $\theta_{\rm B}$ cloud from [Clark & Hensley 2019]

Scatter difference is very significantly larger in target than control Remains at 2 to 6σ above what noise/ residual systematic can do

- Existence (LOS-)frequency decorrelation of dust polarization [e.g, Tassis+15; Pelgrims+21]
- Polarization power spectra (E/B, TE, ...) depends on
 - Relative orientation between magnetic field and dust clouds [e.g., Clark+21; Konstantinou+22]
 - 3D structure of the magnetic field as seen by us [e.g., Pelgrims+22a; Konstantinou+22]

We need

- the 3D geometry of the magnetic field that surrounds us
- the decomposition of the dust signal into dust clouds

to gain confidence in our statistical characterization of dust foregrounds

GOALS

- build 3D maps of dust clouds and POS orientation of the magnetic field and model SEDs per cloud
 - build frequency-dependent templates of dust foregrounds to break degeneracies and narrow down our uncertainty budget

MEANS

Use starlight polarization data combined to distance measures from Gaia to decompose the signal of the dusty magnetized ISM along distance

But... cannot be done with current data set: < 1 star per square degree at high |b|</p>

But... cannot be done with current data set: < 1 star per square degree at high |b|</p>

But... cannot be done with current data set: < 1 star per square degree at high |b|</p>

PASIPHAE: survey forecast

THE COLLABORATION

PI: K. Tassis (IA–FORTH/UOC)

Co-I's: S. Potter, A. Readhead, A. Ramaprakash, I. Wehus

5 nods:

- IA-FORTH/UOCrete (Greece)
- IUCAA (India)
- SAAO (SouthAfrica)
- Caltech (US)
- ITA (Norway)

Collaboration: ~23 members

V. Pelgrims

THE SURVEY

Two telescopes

- Skinakas 1.3m, FoV: 30'x30'
- SAAO 1.m, FoV: 34'x34'

Two instruments: WALOP's

THE SURVEY

Two phases:

- 1. shallow survey down to Rmag = 15 for ~50% of the sky: |b| > ~30°
 - → deep enough to map the dominant clouds contributing to the signal up to ~1-2 kpc distance
 - 2.5 years of observation
 - ▶ 15,000 20,000 sq.deg.
 - >~ 4 Million stars

- 2. deep survey down to Rmag ~16.5 in selected area
 - e.g. those area showing high complexity or increased interests
 - ~1.000 square degree per year

THE CHALLENGES

- Polarimetric instruments for the PASIPHAE program need to be
 - Wide Field of View (high efficiency)
 - High sensitivity: sought signal is low at high |b|
 - High accuracy: systematic uncertainty < 0.1% to be photon noise dominated</p>
 - \rightarrow pioneering on all fronts to bring optical polarimetry into the 21st century
- Instrument design
- Calibration scheme:
 - instrument model
 - use of standard stars / Moon flat
- Survey strategy to optimize observation time and secure science case
 - pointing scheme, exposure time, ...
- Raw data analysis
- High level analysis, inversion problem and exportation to CMB

THE CHALLENGES

- Polarimetric instruments for the PASIPHAE program need to be
 - Wide Field of View (high efficiency)
 - High sensitivity: sought signal is low at high |b|
 - High accuracy: systematic uncertainty < 0.1% to be photon noise dominated</p>
 - \rightarrow pioneering on all fronts to bring optical polarimetry into the 21st century
- Instrument design
- Calibration scheme:
 - instrument model
 - use of standard stars / Moon flat
- Survey strategy to optimize observation time and secure science case
 - pointing scheme, exposure time, ...
- Raw data analysis
- High level analysis, inversion problem and exportation to CMB

[Maharana+2022a; Kypriotakis+2022]

[Blinov+2022; Maharana+2022b]

[Kiehlmann+2022]

V. Pelgrims

THE INSTRUMENTS

[Maharana & PASIPHAE 2021]

- WALOP (North and South): Wide Area Linear Optical Polarimeter
- Four Camera One-Shot Polarimetry Concept

0 Deg polarization

45 Deg polarization

.

.

Four channel polarimetry

Each channel on seperate detector

- reduce sky background by factor of 4
- no overlap of images from different channels
- enable extended object imaging polarimetry for Very Large Field of View

Input field

[Maharana+2021]

THE INSTRUMENTS

[Maharana & PASIPHAE 2021]

- WALOP South optomechanical design
- ✓ secure alignments of all the optics
- ✓ wide FoV: 34 by 34 arcmin
- ✓ systematic <0.1% across the whole FoV</p>

[Maharana+2021]

All technical goals/requirements are met! Instrument's construction and assembly are ongoing

V. Pelgrims

CURRENT STATUS

Soon on the sky!

- WALOP–South is scheduled for commissioning during fall 2022!
- WALOP–North will follow in spring 2023

[Pelgrims & PASIPHAE 2022]

[Pelgrims & PASIPHAE 2022]

[Pelgrims & PASIPHAE 2022]

[Pelgrims & PASIPHAE 2022]

- How many clouds?
- At what distances?
- With what mean polarization?
- With what degree of turbulence?

[Pelgrims & PASIPHAE 2022]

Decomposition of starlight polarization signal along distance

Log-likelihood accounts for

- ✓ parallax uncertainties
- ✓ polarization uncertainties
- Source of intrinsic scatter in polarization signal (e.g. from turbulence)

[Pelgrims & PASIPHAE 2022]

Decomposition of starlight polarization signal along distance

V. Pelgrims

[Pelgrims & PASIPHAE 2022]

Decomposition of starlight polarization signal along distance
Also works on actual data!

- [Pelgrims & PASIPHAE 2022b]
 - Building the first 3D map of the magnetized dusty ISM from a pilot survey

First 3D map (plane projected) of the differential Stokes parameter of the dust polarization emission!

- [Pelgrims & PASIPHAE 2022b]
 - Building the first 3D map of the magnetized dusty ISM from a pilot survey

First 3D map (plane projected) of the differential Stokes parameter of the dust polarization emission!

TAKE-HOME MESSAGE

- PASIPHAE will provide 3D maps of the magnetized dusty ISM
 - ► templates of the Galactic dust polarized emission agnostic to CMB data
 - frequency-dependent templates if coupled to it
- ✓ We are getting ready
- ✓ We will soon be on the sky

TAKE-HOME MESSAGE

- PASIPHAE will provide 3D maps of the magnetized dusty ISM
 - ► templates of the Galactic dust polarized emission **agnostic to CMB data**
 - frequency-dependent templates if coupled to it
- ✓ We are getting ready
- \checkmark We will soon be on the sky

★ Questions?

- Ask me now, later, or even later: <u>pelgrims@ia.forth.gr</u>
- Contact PASIPHAE's PI: Prof K. Tassis: <u>tassis@physics.uoc.gr</u>
- Visit our webpage: <u>http://pasiphae.science/</u>

• Characteristic of dust polarization power spectra ($\mathcal{R}_{EB}, r^{TE}, ...$) depends on

[Konstantinou, Pelgrims, Fuchs, Tassis 2022]

Cloud – magnetic field alignment

• Characteristic of dust polarization power spectra ($\mathcal{R}_{EB}, r^{TE}, ...$) depends on

[Konstantinou, Pelgrims, Fuchs, Tassis 2022]

Viewing angle of 3D B field

- Characteristic of dust polarization power spectra ($\mathcal{R}_{EB}, r^{TE}, ...$) depends on
- Explains large cosmic variance in simulations [e.g., Pelgrims, Ntormousi, Tassis 2022]

- Characteristic of dust polarization power spectra ($\mathcal{R}_{EB}, r^{TE}, ...$) depends on
- Explains large cosmic variance in simulations [e.g., Pelgrims, Ntormousi, Tassis 2022] and seen on the sky [e.g. Bracco et al. 2019]

- Frequency decorrelation of dust polarization signal as due to SED variation
 - Dust SEDs vary across the sky (T, K)
 [e.g. Finkbeiner+99; Planck (XI 14; IV 20);
 Irfan+19]

 SEDs vary along LOSs leading to LOS *v*-decorrelation from dust clouds [Tassis & Pavlidou 2015]

 SEDs vary along LOSs leading to LOS ν-decorrelation from dust clouds [Pelgrims, Clark, Hensley, Panopoulou et al. 2021]

Sightline selection using HI data

#cloud from [Panopoulou & Lenz 2019] $\theta_{\rm B}$ cloud from [Clark & Hensley 2019]

Sky position of pixel samples

Expectation:

Control = 1 cloud; no LOS ν -decorrelation **Target** = 2 *misaligned* clouds; LOS ν -decorrelation

 SEDs vary along LOSs leading to LOS *v*-decorrelation from dust clouds [Pelgrims, Clark, Hensley, Panopoulou et al. 2021]

Scatter difference is very significantly larger in target than control Remains at 2 to 6σ above what noise/residual systematic can do

 SEDs vary along LOSs leading to LOS ν-decorrelation from dust clouds [Pelgrims, Clark, Hensley, Panopoulou et al. 2021]

Found and quantified in (noisy) Planck data!

LOS FREQUENCY DECORRELATION

- Observed *P* and EVPA depend on
 - specific P_2/P_1 ratio _
 - diff. in POS **B** field orientation in each cloud _

EVPA

LOS FREQUENCY DECORRELATION

Observed P and EVPA depend on

- specific P_2/P_1 ratio
- diff. in POS **B** field orientation in each cloud

MOST OF THE DUST SIGNAL COMES FROM THE NEAR

Past « achievements » of starlight polarization

- was used to identify the wall of the Local Bubble as the dominant source of polarized signal at 353 GHz at high Galactic latitudes [Skalidis&VP19]
- assists in modeling the dust polarization sky in picking right modeling approach [Alves+18; VP+20]

- LB shell shape from 3D dust extinction map
- **B** from fit of Q and U at $|b| > 60^{\circ}$

