Accurate CMB covariance matrices for the SPT3G likelihood

Etienne Camphuis, with Silvia Galli, Karim Benabed, Eric Hivon and the SPT collaboration
[EC, Galli, Benabed, Hivon, Lilley] https://arxiv.org/abs/2204.13721

SPT3G

SPT3G patch

- 10-meter diameter telescope
- Located at the South Pole
- 4% of the sky (with the winter field!)
- Also summer field (additional $\sim 8 \%$, see F. Guidi's talk this afternoon)
- 3 frequencies 90, 150, 220 GHz
- Beam: 1.2 arcmin (Planck is 5 arcmin)
- Final noise levels of $2.2 \mu \mathrm{Karcmin}$ in T (Planck is $\sim 4 \mathrm{O} \mu \mathrm{Karcmin}$)

Sky path overlaid over thermal dust emission

Kavli Institute for Cosmological Physics at The University of Chicago

SPT3G-winter field

Cosmological parameters

- 5 years (2019-2023) of SPT3G observations => very high quality data. My goal is to perform the cosmological analysis of the first two years.
- Final constraints on cosmological parameters comparable to Planck
- More details this afternoon by F. Guidi
- [Dutcher et al., 2021] data $+\Lambda$ CDM
- [Balkenhol et al., 2021] Λ CDM extensions

Plan

A. Context
B. Exact covariances, at last !
C. Approximations, old and new
D. Accuracy of approximations

Plan

A. Context

Accurate covariance matrices

Core component of the likelihood

- Previous data release: simulations + empirical estimators, which requires computing resources and regularization [Balkenhol et al. 2021]
- Next data release: (semi-)analytical computation, precision and no need for regularization [EC et al. 2022] https:// arxiv.org/abs/2204.13721. Curved-sky analysis
- Ingredients: mask (introduces coupling) W and theoretical spectrum C_{ℓ}^{th}

Power spectrum gaussian likelihood :

$$
-\ln \mathscr{L}(\hat{C} \mid \Lambda \mathrm{CDM})
$$

$$
\left.\propto \frac{1}{2}\left(\hat{C}-C^{\mathrm{th}}\right)^{T} \Sigma^{-1}\left(\hat{C}-C^{\mathrm{th}}\right)\right)
$$

Unbinned correlation matrices full sky vs masked sky

Accurate covariance matrices

PolSpice and pseudo-power spectrum

- For this analysis we will use PolSpice estimator \hat{C}_{ℓ} [Szapudi et al. 2001][Chon et al. 2004]
- It is built on the pseudo-power spectrum \tilde{C}_{ℓ}, the power spectrum of the masked maps
$\left(\hat{C}_{\ell}^{\mathrm{TT}}=\sum_{\ell^{\prime}}{ }_{0} G_{\ell \ell^{\prime}} \tilde{\boldsymbol{C}}_{\ell^{\prime}}^{\mathrm{TT}}\right)$
- Our goal is to compute analytically the covariance matrix of the pseudo-power spectrum
- This work can thus be extended to any estimator built on pseudo-power spectrum

Power spectrum gaussian likelihood :

$$
-\ln \mathscr{L}(\hat{C} \mid \Lambda \mathrm{CDM})
$$

$$
\left.\propto \frac{1}{2}\left(\hat{C}-C^{\mathrm{th}}\right)^{7} \Sigma^{-1}\left(\hat{C}-C^{\mathrm{th}}\right)\right)
$$

Accurate covariance matrices

PolSpice and pseudo-power spectrum

- For this analysis we will use PolSpice estimator \hat{C}_{ℓ} [Szapudi et al. 2001][Chon et al. 2004]

$$
\left.\propto \frac{1}{2}\left(\hat{C}-C^{\mathrm{th}}\right)^{T} \Sigma^{-1}\left(\hat{C}-C^{\mathrm{th}}\right)\right)
$$

- It is built on the pseudo-power spectrum \tilde{C}_{ℓ}, the power spectrum of the masked maps

$$
\left(\hat{C}_{\ell}^{\mathrm{TT}}=\sum_{\ell^{\prime}}{ }_{0} G_{\ell \ell^{\prime}} \tilde{C}_{\ell^{\prime}}^{\mathrm{TT}}\right)
$$

- Our goal is to compute analytically the covariance matrix of the pseudo-power spectrum
- This work can thus be extended to any estimator built on pseudo-power spectrum

Power spectrum gaussian likelihood :

$$
-\ln \mathscr{L}(\hat{C} \mid \Lambda \mathrm{CDM})
$$

Built on the pseudo-power spectrum = power spectrum of the masked maps \tilde{C}_{ℓ}

$$
\tilde{\Sigma}_{\ell \ell^{\prime}}=\operatorname{cov}\left(\tilde{C}_{\ell}, \tilde{C}_{\ell^{\prime}}\right)
$$

Formalism

Covariance matrix of the pseudo-power spectrum

$$
\operatorname{Cov}\left(\tilde{C}_{\ell}, \tilde{C}_{\ell^{\prime}}\right)=2 \Xi_{\ell \ell^{\prime}}\left[W^{2}\right] \sum_{\ell_{1} \ell_{2}} C_{\ell_{1}}^{\mathrm{th}} \bar{\Theta}_{\ell \ell^{\prime}}^{\ell_{1} \ell_{2}}[W] C_{\ell_{2}}^{\mathrm{th}}
$$

Formalism

Covariance matrix of the pseudo-power spectrum

$$
\operatorname{Cov}\left(\tilde{C}_{\ell}, \tilde{C}_{\ell^{\prime}}\right)=2 \Xi_{\ell \ell^{\prime}}\left[W^{2}\right] \sum_{\ell_{1} \ell_{2}} C_{\ell_{1}}^{\mathrm{th}} \bar{\Theta}_{\ell \ell^{\prime}}^{\ell_{1} \ell_{2}}[W] C_{\ell_{2}}^{\mathrm{th}}
$$

Pure geometric coupling - MASTER matrix
Well known [Hivon et al. 2002]
Scales as $\mathcal{O}\left(\ell_{\text {max }}^{3}\right)\left(\right.$ or even $\mathcal{O}\left(\ell_{\text {max }}^{2}\right)$ using [Louis et al. 2020] $)$

Formalism

Covariance matrix of the pseudo-power spectrum

Theoretical power spectrum from model
Can include beam, transfer function, noise, pixel window function.

$$
\operatorname{Cov}\left(\tilde{C}_{\ell}, \tilde{C}_{\ell^{\prime}}\right)=2 \underline{E}_{\ell \ell^{\prime}}\left[W^{2}\right] \sum_{\ell_{1} \ell_{2}} C_{\left.\ell_{\ell}^{\text {th }}\right]} \bar{\Theta}_{\ell \ell^{\prime} \ell_{1} \ell_{2}}[W] C_{\ell_{2} \text { th }}
$$

Pure geometric coupling - MASTER matrix
Well known [Hivon et al. 2002]
Scales as $\mathcal{O}\left(\ell_{\max }^{3}\right)\left(\right.$ or even $\mathcal{O}\left(\ell_{\text {max }}^{2}\right)$ using [Louis et al. 2020] $)$

Formalism

Covariance matrix of the pseudo-power spectrum

Theoretical power spectrum from model
Can include beam, transfer function, noise, pixel window function.

Pure geometric coupling - MASTER matrix
Well known [Hivon et al. 2002]
Scales as $\mathcal{O}\left(\ell_{\text {max }}^{3}\right)\left(\right.$ or even $\mathcal{O}\left(\ell_{\text {max }}^{2}\right)$ using [Louis et al. 2020] $)$

Covariance coupling kernel
Scales as $\mathcal{O}\left(\ell_{\text {max }}^{6}\right)$ and $\ell_{\text {max }} \sim 4000$
Always approximated in the literature
UNTIL NOW!

Plan

A. Context
B. Exact covariances, at last !

5xact covaliaince

- I implemented for the first time an exact computation, with a x100o speedup (Healpix based algorithm)
- This code allows to compute any rank of covariance at any multipole
- Scales as $\mathcal{O}\left(n_{\text {side }}^{5}\right)=\mathcal{O}\left(\ell_{\max }^{5}\right)$ instead of $\mathcal{O}\left(\ell_{\max }^{6}\right)$
- Full computation up to $\ell=1000$
- 3 ooh CPU time for a slice at $\ell=1000$

$$
\sigma_{f^{\prime}}=\frac{\Sigma_{t e^{\prime}}}{\sqrt{\Sigma_{t t^{\prime}} \Sigma_{t t^{\prime}}}}
$$

Plan

A. Context
B. Exact covariances, at last !
C. Approximations, old and new

Approximations

It is not realistic to run the exact computation for all multipoles => we use approximations that work for every multipole !

- [Efstathiou 2004]+[Challinor\&Chon 2004] NKA - Planck and others $=>\mathcal{O}\left(\ell_{\max }^{3}\right)$
- [Friedrich et al. 2021] $\mathbf{F R I}=>\mathcal{O}\left(\ell_{\text {max }}^{3}\right)-$ DESY $_{3}$
- [Nicola et al. 2021] INKA $=>\mathcal{O}\left(\ell_{\max }^{3}\right)$
- [EC et al. 2022] ACC - obtained with our knowledge from the exact computation Scales as $\mathcal{O}\left(d_{\text {max }} n_{\text {side }}^{4}\right) \gg \mathcal{O}\left(\ell_{\text {max }}^{3}\right)(\sim 1$ ooh of CPU-time vs few minutes $)$ but it has to be computed only once per mask

No source masking !!

Approximations are expected to be less precise on small survey area

Approximations $\operatorname{Cov}\left(\tilde{C}_{\ell}, \tilde{C}_{\ell}\right)=2 \Xi_{\ell \ell}\left[W^{2}\right] \sum C_{\ell_{1}}^{\text {th }} \bar{\theta}_{\ell e^{\prime} t}^{\ell_{t} t}[W] C_{t_{2}}^{\text {th }}$

Comparing the covariance coupling kernels
Approximations:

- NKA (Planck) (o)

Exact

Comparing the covariance coupling kernels
Approximations:

- NKA (Planck) (o)
- FRI (+)

Exact

Approximations $\operatorname{Cov}\left(\tilde{C}_{\ell}, \tilde{C}_{\ell^{\prime}}\right)=2 \Xi_{\ell \epsilon}\left[W^{2}\right] \sum C_{t_{1}}^{\mathrm{th}^{\text {th }}} \bar{\theta}_{\ell e^{\prime} \ell_{e}}^{\ell_{2}}[W] C_{t_{2}}^{\text {th }}$

Comparing the covariance coupling kernels
Approximations:

- NKA (Planck) (o)
- FRI (+)
- INKA (image)

Exact

Approximations $\operatorname{Cov}\left(\tilde{C}_{\ell}, \tilde{C}_{\ell}\right)=2 \Xi_{\ell \ell}\left[W^{2}\right] \sum C_{\ell_{1}}^{\text {th }} \bar{\theta}_{\ell e^{\prime} t}^{\ell_{t} t}[W] C_{t_{2}}^{\text {th }}$

Comparing the covariance coupling kernels
Approximations:

- ACC (this work)

Using the same $\bar{\Theta}$ for identical multipole separation $\left|\ell-\ell^{\prime}\right|$

Exact

Plan

A. Introducing covariance matrices
B. Exact covariances, at last !
C. Approximations, old and new
D. Accuracy of approximations

Relative difference of covariance rows

Results

Accuracy of approximations

- We look at the relative difference of rows of the covariance centered on the diagonal
- In red ACC

Results

Binned covariances

Relative difference of binned approximations vs exact computation

- Looking at binned covariance
($\Delta \ell=50$)
- Literature approximations work with precision up to 5%.
- ACC is more precise, percent level

Future developments

- This formalism can already 1 D include instrumental effects. More work is needed for 2D transfer function, but exact computation helps a lot!
- Main problem: point sources masking but the problem already existed for other approximations. I am working on 3 solutions:
- Analytical model by treating the mask as a stochastic process [Gratton, Challinor, Migliaccio, Hivon, Lilley, Camphuis in prep]
- Gaussian constrained realization in the holes with polcork [Benoit-Levy et al. 2013] with K. Benabed
- CarPool [Chartier et al. 2021][Chartier, Camphuis et al. in prep]

Summary

- We are now able to compute an exact covariance matrix
- We showed that current approximations work fine on small footprints
- We built a new one that works even better
- This work can be applied to other probes, masks, experiments.
- https://arxiv.org/abs/2204.13721-submitted to A\&A for more details.

ABSTRACT

Accurate covariance matrices are required for a reliable estimation of cosmological parameters from pseudo-power spectrum estimaAccurate covariance matrices are required for a reliable estimation of cosmologica paraneters from pseco-power spectrum estimators. In this work, we focus on the analytical calculation of covariance matrices. We consider the case of observations of the Cosmic
Microwave Background in temperature and polarization on a small footprint such as in the SPT-3G experiment, which observes 4% of the sky. Power spectra evaluated on small footprints are expected to have large correlations between modes, and these need to be accurately modelled. We present, for the first time, an algorithm that allows an efficient (but computationally expensive) exact calculation of analytic covariance matrices. Using it as our reference, we test the accuracy of existing fast approximations of the covariance matrix. We find that, when the power spectrum is binned in wide bandpowers, current approaches are correct up to the 5% level on the SPT-3G small sky footprint. Furthermore, we propose a new approximation which improves over the previous ones reaching a precision of 1% in the wide bandpowers case and generally more than 4 times more accurate than current approaches. Finally, we dase
rive the covariance matrices for mask-corrected power spectra estimated by the PolSpice code. In particular, we include, in the case rive the covariance matrices for mask-corrected power spectra estimated by the Poispice code. In particular, we include, in the case
of a small sky fraction, the effect of the apodization of the large scale modes. While we considered the specific case of the CMB, our results are applicable to any other cosmological probe which requires the calculation of pseudo-power spectrum covariance matrices. Key words. cosmic background radiation - cosmology: observations - cosmological parameters - methods: data analysis

Please contact me if you have any question! etienne.camphuis@iap.fr

Thankyou

