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SPT3G

• 10-meter diameter telescope 

• Located at the South Pole 

• 4% of the sky (with the winter 
field!) 

• Also summer field (additional ~8%, 
see F. Guidi’s talk this afternoon) 

• 3 frequencies 90, 150, 220 GHz 

• Beam: 1.2 arcmin (Planck is 5 arcmin) 

• Final noise levels of 2.2  in 
T (Planck is ~40 )

μKarcmin
μKarcmin
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Sky path overlaid over thermal dust emission

SPT3G patch

Credits: Aman Choski



SPT3G - winter field
Cosmological parameters

• 5 years (2019-2023) of SPT3G observations => 
very high quality data. My goal is to perform 
the cosmological analysis of the first two years. 

• Final constraints on cosmological parameters 
comparable to Planck  

• More details this afternoon by F. Guidi 

• [Dutcher et al., 2021] data + CDM 

• [Balkenhol et al., 2021] CDM extensions

Λ

Λ

[Dutcher et al., 2021] 

Constraining cosmological parameters with SPT3G 2018
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Plan

A. Context 

B. Exact covariances, at last ! 

C. Approximations, old and new 

D. Accuracy of approximations
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Plan

A. Context
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Accurate covariance matrices
Core component of the likelihood

• Previous data release: simulations + 
empirical estimators, which requires 
computing resources and regularization 
[Balkenhol et al. 2021] 

• Next data release: (semi-)analytical 
computation, precision and no need 
for regularization [EC et al. 2022] https://
arxiv.org/abs/2204.13721. Curved-sky 
analysis 

• Ingredients: mask (introduces coupling) 
 and theoretical spectrum W Cth

ℓ
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Accurate covariance matrices
PolSpice and pseudo-power spectrum

• For this analysis we will use  estimator 
 [Szapudi et al. 2001][Chon et al. 2004] 

• It is built on the pseudo-power spectrum , the 
power spectrum of the masked maps 
( ) 

• Our goal is to compute analytically the 
covariance matrix of the pseudo-power 
spectrum 

• This work can thus be extended to any estimator 
built on pseudo-power spectrum

𝙿𝚘𝚕𝚂𝚙𝚒𝚌𝚎
Ĉℓ
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ĈTT
ℓ = ∑

ℓ′ 

0Gℓℓ′ 
C̃TT

ℓ′ 

7



−ln ℒ(Ĉ |ΛCDM)
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Σ̃ℓℓ′ 
= cov(C̃ℓ, C̃ℓ′ 

)

Built on the 
pseudo-power 

spectrum = 
power spectrum 

of the masked 
maps C̃ℓ



Formalism
Covariance matrix of the pseudo-power spectrum

Cov(C̃ℓ, C̃ℓ′ 
) = 2Ξℓℓ′ 

[W2]∑
ℓ1ℓ2

Cth
ℓ1

Θ̄ℓ1ℓ2
ℓℓ′ 

[W] Cth
ℓ2
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Formalism
Covariance matrix of the pseudo-power spectrum

Pure geometric coupling - MASTER matrix 

Well known [Hivon et al. 2002] 

Scales as  (or even  using [Louis et al. 2020])𝒪(ℓ3
max) 𝒪(ℓ2

max)
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Theoretical power spectrum from model 
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pixel window function.
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Formalism
Covariance matrix of the pseudo-power spectrum

Pure geometric coupling - MASTER matrix 

Well known [Hivon et al. 2002] 

Scales as  (or even  using [Louis et al. 2020])𝒪(ℓ3
max) 𝒪(ℓ2

max)

Theoretical power spectrum from model 

Can include beam, transfer function, noise, 
pixel window function.

Covariance coupling kernel 

Scales as  and   

Always approximated in the literature 

UNTIL NOW!

𝒪(ℓ6
max) ℓmax ∼ 4000
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Plan

A. Context 

B. Exact covariances, at last !

9



Exact covariance
• I implemented for the first time an 

exact computation, with a x1000 
speedup (  based algorithm) 

• This code allows to compute any 
rank of covariance at any multipole  

• Scales as   instead 
of  

• Full computation up to  

• 300h CPU time for a slice at 

𝙷𝚎𝚊𝚕𝚙𝚒𝚡

𝒪(n5
side) = 𝒪(ℓ5

max)
𝒪(ℓ6

max)
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σℓℓ′ =
Σℓℓ′ 

ΣℓℓΣℓ′ ℓ′ 
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EXACT SIMULATED

Monte Carlo noise 
Nsim = 10 000



Plan

A. Context 

B. Exact covariances, at last ! 

C. Approximations, old and new
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Approximations

• [Efstathiou 2004]+[Challinor&Chon 2004] NKA - Planck and others =>  

• [Friedrich et al. 2021] FRI =>  - DESY3 

• [Nicola et al. 2021] INKA =>  

• [EC et al. 2022] ACC - obtained with our knowledge from the exact computation  

Scales as  (~100h of CPU-time vs few minutes) but it has to 
be computed only once per mask 

Approximations are expected to be less precise on small survey area

𝒪(ℓ3
max)

𝒪(ℓ3
max)

𝒪(ℓ3
max)

𝒪(dmaxn4
side) ≫ 𝒪(ℓ3

max)

It is not realistic to run the exact computation for all multipoles => we use 
approximations that work for every multipole !
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Approximations
Comparing the covariance coupling kernels

Approximations: 

• NKA (Planck) (o) 

Exact
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Approximations

Approximations: 

• NKA (Planck) (o) 

• FRI (+) 

Exact
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Approximations

Approximations: 

• NKA (Planck) (o) 

• FRI (+) 

• INKA (image) 

Exact
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Approximations

Approximations: 

• ACC (this work) 

Using the same  for identical 
multipole separation  

Exact

Θ̄
|ℓ − ℓ′ |
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Plan

A. Introducing covariance matrices 

B. Exact covariances, at last ! 

C. Approximations, old and new 

D. Accuracy of approximations
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Results
Accuracy of approximations

• We look at the relative difference of 
rows of the covariance centered on 
the diagonal 

• In red ACC
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Results
Binned covariances

• Looking at binned 
covariance 
( ) 

• Literature 
approximations 
work with 
precision up to 
5%.  

• ACC is more 
precise, percent 
level
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Future developments

• This formalism can already 1D include instrumental effects. More work is needed for 2D 
transfer function, but exact computation helps a lot ! 

• Main problem: point sources masking but the problem already existed for other 
approximations. I am working on 3 solutions: 
‣ Analytical model by treating the mask as a stochastic process [Gratton, Challinor, 

Migliaccio, Hivon, Lilley, Camphuis in prep] 
‣ Gaussian constrained realization in the holes with polcork [Benoit-Levy et al. 2013] 

with K. Benabed 
‣ CarPool [Chartier et al. 2021][Chartier, Camphuis et al. in prep]
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Summary

• We are now able to compute an exact 
covariance matrix 

• We showed that current approximations 
work fine on small footprints 

• We built a new one that works even better 

• This work can be applied to other probes, 
masks, experiments.  

• https://arxiv.org/abs/2204.13721 -submitted 
to A&A for more details.
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Please contact me if you have any 
question ! 

etienne.camphuis@iap.fr

https://arxiv.org/abs/2204.13721
mailto:etienne.camphuis@iap.fr


Thank you
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Credits: Aman Choski


