

SO Likelihood Codes for CMB Combined Probes

Ian Harrison with SO LT.1 Group

From Planck to the Future of CMB

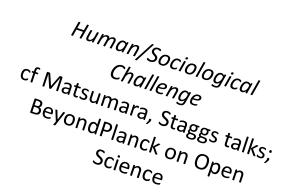
Ferrara

26 May 2022

• Slides are at:

bit.ly/ianh_ferrara22

- SO codes for Likelihoods and Theory vectors: "SOLikeT"
- Talk about plans and work in progress
- Focus on two aspects:
 - Code development workflow
 - LSS cross-correlation likelihoods (including two examples)



Introduction

The Simons Observatory Collaboration

Slides available at http://bit.ly/ianh ferrara22

- 10 Countries, 40+ Institutions, 306 Researchers
- Design, build, test, calibrate, deploy:
 - Hardware: SAT and LAT
 - Reduction methods & software to create data vectors with uncertainties
 - Inference methods & software to interpret what this tells us about the Universe
- Time schedule:
 - 2022: Validation, integration, test
 - Mid 2023: First science observations
 - Mid 2024 Mid 2029: Full science observations

Introduction

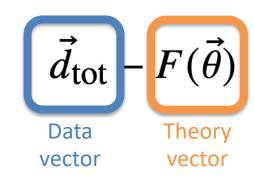
The Simons Observatory Collaboration

Slides available at http://bit.ly/ianh ferrara22

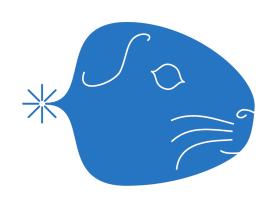
- 10 Countries, 40+ Institutions, 306 Researchers
- Design, build, test, calibrate, deploy:
 - Hardware: SAT and LAT
 - Reduction methods & software to create data vectors with uncertainties
 - Inference methods & software to interpret what this tells us about the Universe
- lime schedule:
 - 2022: Validation, integration, test
 - Mid 2023: First science observations
 - Mid 2024 Mid 2029: Full science observations

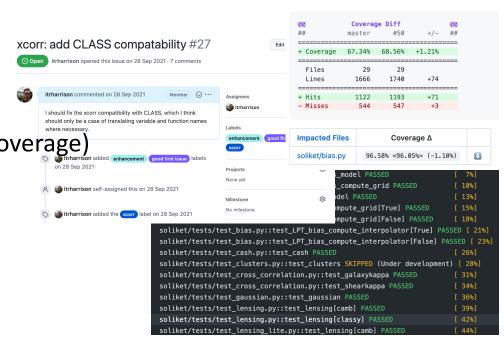
Many important interfaces between models and experts

Human/Sociological cf Matsumara, Staggs talks; BeyondPlanck on Open

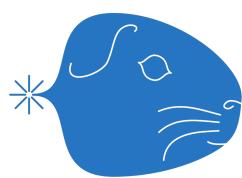


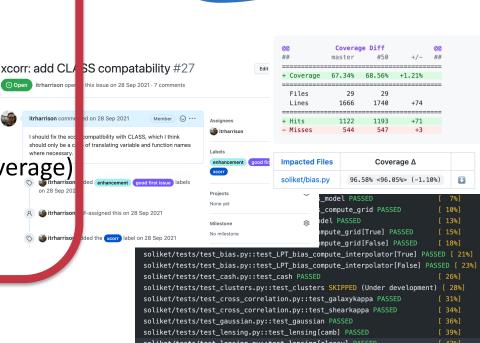
- SO Likelihoods & Theories -> SOLikeT Leads: Martina Gerbino, IH, Tim Morton Many contributors!
- Collect, test and cohere theory vector and likelihood codes developed across SO
- Aim for holistic / joint inference
 - Instrument, astrophysics, cosmology are all together in the data
 - Many-part data vector (SO and non-SO)
 - Consistent parameterisation, modelling calculations across all parts of the theory vectors




$$\{\vec{d}_{C_\ell^{TT}}, \vec{d}_{C_\ell^{TE}}, \vec{d}_{C_\ell^{EE}}, \vec{d}_{C_\ell^{KK}}, \vec{d}_{C_\ell^{gK}}\}$$

$$\vec{\theta} = \{\Omega_{\rm m}, \tau, \Delta_{\rm band}^{93}, a_{\rm tSZ}, \ldots\}$$


- Implemented within <u>cobaya</u> sampling framework
- Development in public github repo: github.com/simonsobs/SOLikeT
- Open, flexible, understandable, reliable, fast (enough)
- Better practices for code development
 - Issues to describe and discuss new features, implementations, bug fixes
 - Work on well-managed branches
 - Write Unit Tests (which are automatically checked for coverage)
 - Require code review for merging into main branch
 - Written guidelines on how to contribute



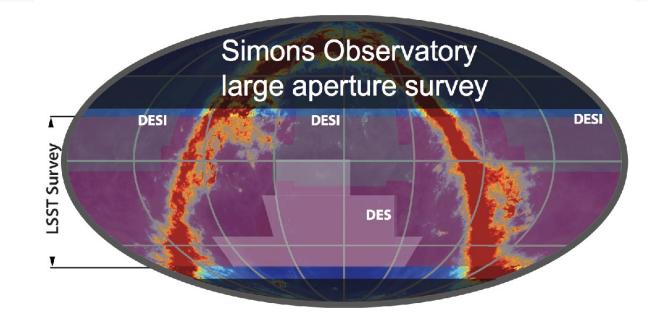
Slides available at http://bit.ly/ianh_ferrara22

- Implemented within <u>cobaya</u> sampling framework
- Development in public github repo: github.com/simonsobs/SOLikeT
- Open, flexible, understandable, reliable, fast (enough)
- Better practices for code development
 - Issues to describe and discuss new features, implementations, bug fixes
 - Work on well-managed branches
 - Write Unit Tests (which are automatically checked for coverage)
 - Require code review for merging into main branch
 - Written <u>guidelines</u> on how to contribute

Current / in development likelihoods:

- MFLike (CMB multi-frequency TTTEEE) Gerbino, Pagano et al
- Cluster (unbinned SZ cluster counts) Battaglia et al
- BinnedCluster ({1D, 2D} binned SZ cluster counts) Lee, Bollet et al
- Lensing (CMB lensing power spectrum)
- {Galaxy, Shear}Kappa (CCL-calculator galaxy {density, shear} x CMB lensing) Harrison, Lemos
- Xcorr (galaxy {density, shear} x CMB lensing) Harrison from Krolewski et al
- SZ ({k, T}SZ Temperature, pressure and density profiles) Moser, Battaglia et al

Current / in development likelihoods:


- MFLike (CMB multi-frequency TTTEEE) Gerbino, Pagano et al
- Cluster (unbinned SZ cluster counts) Battaglia et al
- BinnedCluster ({1D, 2D} binned SZ cluster counts) Lee, Bollet et al
- Lensing (CMB lensing power spectrum)
- {Galaxy, Shear}Kappa (CCL-calculator galaxy {density, shear} х СМВ lensing) наглізоп, Lemos
- Xcorr (galaxy {density, shear} x CMB lensing) Harrison from Krolewski et al
- SZ ({k, T}SZ Temperature, pressure and density profiles) Moser, Battaglia et al
- Aim to start moving from "collection phase" to consolidation/coherence phase over summer SO meeting

Introduction O/2 2022 20 alexandre time

SO-LSS Cross-Correlations

- SO's 2023-28 observing timeline overlaps with Rubin Observatory, DESI, Euclid
- CMB and optical surveys both measure large-scale matter and baryon distribution.
- Better together! Growth of cosmic structure, constraints on baryonic feedback, calibrating systematic effects...

	Parameter	SO-Baseline ^a (no syst)	SO-Baseline ^b	SO-Goal ^c	$Current^d$	Method	Sec.
Primordial	r	0.0024	0.003	0.002	0.03	BB + ext delens	3.4
perturbations	$e^{-2\tau}\mathcal{P}(k\!=\!0.2/\mathrm{Mpc})$	0.4%	0.5%	0.4%	3%	TT/TE/EE	4.2
	$f_{\rm NL}^{\rm local}$	1.8	3	1	5	$\kappa \kappa \times \text{LSST-LSS} + 3\text{-pt}$	5.3
		1	2	1		kSZ + LSST-LSS	7.5
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE + \kappa\kappa$	4.1
Neutrino mass	Σm_{ν}	0.033	0.04	0.03	0.1	$\kappa\kappa$ + DESI-BAO	5.2
		0.035	0.04	0.03		$tSZ-N \times LSST-WL$	7.1
		0.036	0.05	0.04		tSZ-Y + DESI-BAO	7.2
Deviations from Λ	$\sigma_8(z = 1 - 2)$	1.2%	2%	1%	7%	$\kappa\kappa + LSST-LSS$	5.3
		1.2%	2%	1%		$tSZ-N \times LSST-WL$	7.1
	H_0 (Λ CDM)	0.3	0.4	0.3	0.5	$TT/TE/EE + \kappa\kappa$	4.3
Galaxy evolution	$\eta_{\rm feedback}$	2%	3%	2%	50-100%	kSZ + tSZ + DESI	7.3
	$p_{ m nt}$	6%	8%	5%	50-100%	kSZ + tSZ + DESI	7.3
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)	7.6

^a This column reports forecasts from earlier sections (in some cases using 2 s.f.) and applies no additional systematic error.

^d Primarily from [44] and [287].
Table 9. Summary of SO key science goals. All of our SO forecasts assume that SO is combined.

From: The Simons Observatory: science goals and forecasts

Peter Ade, et al., JCAP02 (2019) 056

^b This is the nominal forecast, increases the column (a) uncertainties by 25% as a proxy for instrumen systematics, and rounds up to 1 s.f.

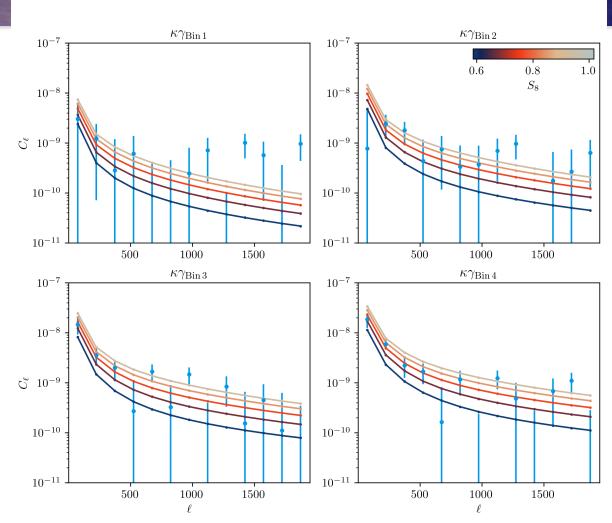
^c This is the goal forecast, has negligible additional systematic uncertainties, and rounds to 1 s.

Simons Observatory

large aperture survey

SO-LSS Cross-Correlations Introduction

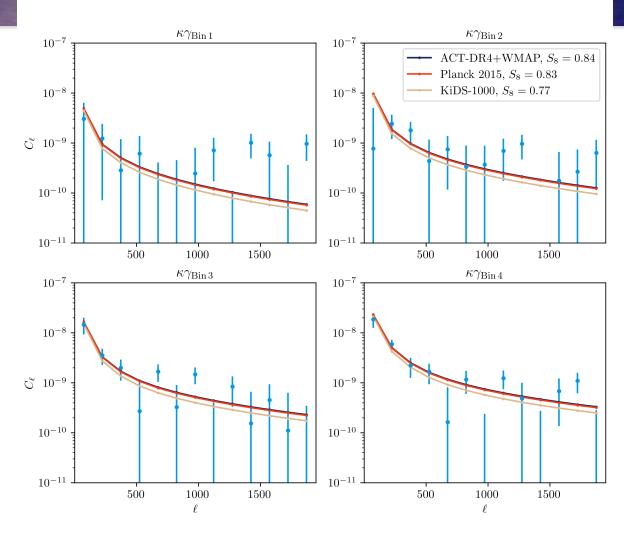
 SO's 2023-28 observing timeline overlaps with Rubin Observatory. DESI. Euclid


	Observatory, DE	ESI, Euclid			DESI		DESI		DESI	
•	CMB a Dark energy or modified grav	rity	$w_0 \\ w_a \\ \text{Growth rate } (\Delta$	$(\sigma_8 f_g)/\sigma_8 f_g)$		$0.06 \\ 0.2 \\ 0.1$	$ ext{tSZ} + ext{LSST} \ ext{tSZ} + ext{LSST} \ ext{kSZ} + ext{DESI}$			
	meast Shear bias calib	east Shear bias calibration		$m_{\mathrm{z}=1}$		0.007	$\kappa\kappa{+}\mathrm{LSST}$			
	baryoı $f_{ m NL}^{ m local}$	1.8	3	1	5	$\kappa\kappa \times LSS$	ST-LSS + 3-pt	5.3		
	_	1	2	1		kSZ + L	SST-LSS	7.5		
•	Bette $\Sigma m_{ u}$	0.033	0.04	0.03	0.1	$\kappa \kappa + DH$	ESI-BAO	5.2		
	cosm	0.035	0.04	0.03		$tSZ-N \times LSST-WL$ tSZ-Y + DESI-BAO		7.1	Observatory: science	
	_	0.036	0.05	0.04				7.2		
	$baryc_{\sigma_8(z=1-2)}$	1.2%	2 %	1%	7%	$\kappa\kappa + LS$	ST-LSS	5.3	forecasts	
	syste	1.2%	2 %	1%		$tSZ-N \times$	LSST-WL	7.1	Peter Ade, et al.,	
	$\eta_{ m feedback}$	2%	3 %	2%	50-100%	kSZ + tS	SZ + DESI	7.3	JCAP02 (2019) 056	
	$p_{ m nt}$	6%	8%	5%	50 100%	kSZ + ts	SZ + DESI	7.3		

SOLikeT Testbeds ACT kappa x DES shear

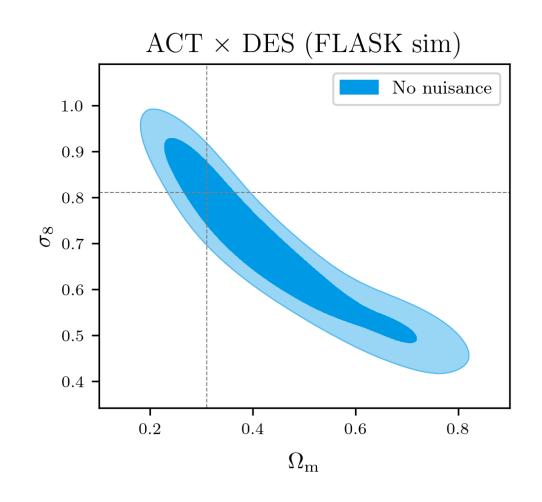
 $ACT \times DES$ (FLASK sim) varying S_8

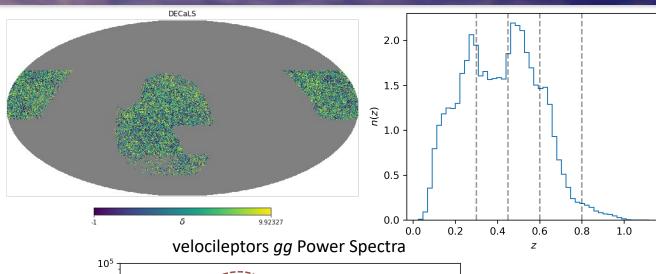
- ACT lensing map
- DES Y3 shear catalogue
 - 4 tomographic bins
- Measures S_8 structure clustering parameter
- Calibration of galaxy shear systematics
 - Δz mean redshift of source galaxy n(z)
 - m galaxy shear multiplicative bias
 - Intrinsic Alignment model parameters

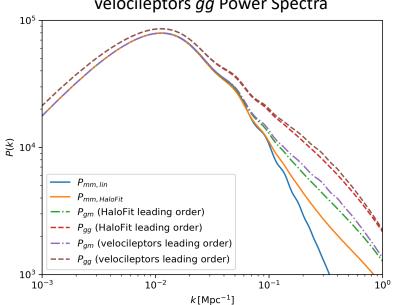




SOLikeT Testbeds ACT kappa x DES shear


- ACT lensing map
- DES Y3 shear catalogue
 - 4 tomographic bins
- Measures S_8 structure clustering parameter
- Calibration of galaxy shear systematics
 - Δz mean redshift of source galaxy n(z)
 - m galaxy shear multiplicative bias
 - Intrinsic Alignment model parameters

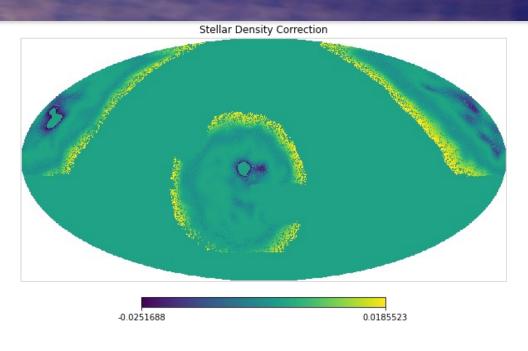

- FLASK simulation, covariance matrix, data validation thanks to Shabbir Shaikh (ASU)
- Total forecast SNR ~9
 - Robertson et al 2021 SNR 7.7
 - Marques et al 2020 SNR 3.1
- Have run initial chains without nuisance parameters

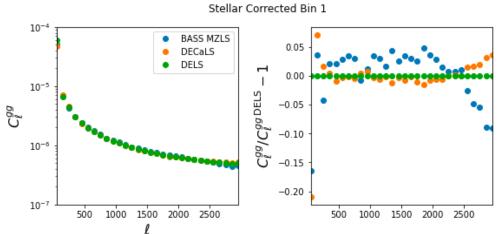


SOLikeT Testbeds ACT kappa x DELS galaxies

Slides available at http://bit.ly/ianh_ferrara22

- ACT DR4 lensing map
- DELS: DECALS + BASS-MZLS galaxies
 - 4 tomographic bins
 - As in <u>Hang et al 2021</u>
- Galaxy power spectrum non-linear models (implemented as cobaya Theory classes)
 - velocileptors
 - FastPT thanks to Pablo Lemos





SOLikeT Testbeds ACT kappa x DELS galaxies

Slides available at http://bit.ly/ianh_ferrara22

- Work in progress...
- Performing systematics tests on gg data
- Forecast SNR ~25
 - Krolewski et al 2021 SNR 80
 - Kitanidis and White 2021 SNR 27

Simons Observatory developing theory prediction and likelihood codes within cobaya

"SOLikeT"

Conclusions

- Open, reliable, well-tested
- Coherently model multiple data vector types in CMB and cross-correlations
- Starting to deploy and test on current data
 - ACT CMB lensing x DES galaxy shear
 - ACT CMB lensing x DELS galaxy density