$\begin{aligned} & \text { European } \\ & \text { Commission } \end{aligned}$	

BeyondPlanck and Cosmoglobe

Mathew Galloway

University of oslo

From Planck to the Future of CMB, May 26, 2022

Planck (2018), A\&A, 641, A2
Beyond

End-to-end iterative analysis

End to-end iterative analysis

The BeyondPlanck project

Main goals of the BeyondPlanck project:

- Implement an end-to-end analysis framework for current and future CMB experiments using Planck experience
- Demonstrate this framework with Planck LFI data
- Make software and results publicly available under an OpenSource license

The BeyondPlanck collaboration

EU-funded institutions

Kristian Joten Andersen Ragnhild Aurlien
Ranajoy Banerji
Maksym Brilenkov Hans Kristian Eriksen Johannes Røsok Eskilt Marie Kristine Foss
Unni Fuskeland
Eirik Gjerløw
Mathew Galloway
Daniel Herman
Ata Karakci
Håvard Tveit Ihle Metin San
Trygve Leithe Svalheim
Harald Thommesen
Duncan Watts
Ingunn Kathrine Wehus

Marco Bersanelli
Loris Colombo
Cristian Franceschet
Davide Maino
Aniello Mennella
Simone Paradiso

Sara Bertocco
Samuele Galeotta Gianmarco Maggio Michele Maris
Daniele Tavagnacco
Andrea Zacchei

Elina Keihänen
Anna-Stiina Suur-Uski

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Stelios Bollanos Stratos Gerakakis Maria leoronymaki Ilias loannou

External collaborators
 Brandon Hensley

HAVERFORD
Bruce Partridge

Martin Reinecke

EU-funded institutions

Kristian Joten Andersen Ragnhild Aurlien Ranajoy Banerji Maksym Brilenkov Hans Kristian Eriksen Johannes Røsok Eskilt Marie Kristine Foss Unni Fuskeland Eirik Gjerløw Mathew Galloway Daniel Herman Ata Karakci Håvard Tveit Ihle Metin San Trygve Leithe Svalheim Harald Thommesen Duncan Watts Ingunn Kathrine Wehus

Marco Bersanelli Loris Colombo Cristian Franceschet Davide Maino Aniello Mennella Simone Paradiso

Beyond

The BeyondPlanck pipeline in one slide

1. Write down an explicit parametric model for the observed data:
$d_{j, t}=g_{j, t} \mathrm{P}_{t p, j}\left[\mathrm{~B}_{p p^{\prime}, j}^{\text {symm }} \sum_{c} \mathrm{M}_{c j}\left(\beta_{p^{\prime}}, \Delta_{\mathrm{bp}}^{j}\right) a_{p^{\prime}}^{c}+\mathrm{B}_{j, t}^{\text {asymm }}\left(\boldsymbol{s}_{j}^{\mathrm{orb}}+\boldsymbol{s}_{t}^{\mathrm{fsl}}\right)\right]+n_{j, t}^{\text {corr }}+n_{j, t}^{\mathrm{w}}$.
Let $\omega=\{$ all free parameters $\}$
2. Derive the joint posterior distribution with Bayes' theorem:

$$
P(\omega \mid \boldsymbol{d})=\frac{P(\boldsymbol{d} \mid \omega) P(\omega)}{P(\boldsymbol{d})} \propto \mathcal{L}(\omega) P(\omega)
$$

3. Map out $P(\omega \mid \boldsymbol{d})$ with standard Markov Chain Monte Carlo (MCMC) methods

The BeyondPlanck data model

The BeyondPlanck data mode

$$
\left.\begin{array}{rlrl}
\boldsymbol{g} & \leftarrow P(\boldsymbol{g} & \mid \boldsymbol{d}, & \left.\xi_{n}, \Delta_{\mathrm{bp}}, \boldsymbol{a}, \beta, C_{\ell}\right) \\
\boldsymbol{n}_{\text {corr }} & \leftarrow P\left(\boldsymbol{n}_{\text {corr }} \mid \boldsymbol{d}, \boldsymbol{g}, \quad \xi_{n}, \Delta_{\mathrm{bp}}, \boldsymbol{a}, \beta, C_{\ell}\right) \\
\xi_{n} & \leftarrow P\left(\xi_{n}\right. & \left.\mid \boldsymbol{d}, \boldsymbol{g}, \boldsymbol{n}_{\text {corr }}, \quad \Delta_{\mathrm{bp}}, \boldsymbol{a}, \beta, C_{\ell}\right) \\
\Delta_{\mathrm{bp}} & \leftarrow P\left(\Delta_{\mathrm{bp}}\right. & \left.\mid \boldsymbol{d}, \boldsymbol{g}, \boldsymbol{n}_{\text {corr }}, \xi_{n}, \quad \boldsymbol{a}, \beta, C_{\ell}\right) \\
\beta & \leftarrow P\left(\beta \quad \mid \boldsymbol{d}, \boldsymbol{g}, \boldsymbol{n}_{\text {corr }}, \xi_{n}, \Delta_{\mathrm{bp}}, \quad C_{\ell}\right) \\
\boldsymbol{a} & \leftarrow P(\boldsymbol{a} & \left.\mid \boldsymbol{d}, \boldsymbol{g}, \boldsymbol{n}_{\text {corr }}, \xi_{n}, \Delta_{\mathrm{bp}}, \quad \beta, C_{\ell}\right) \\
C_{\ell} & \leftarrow P\left(C_{\ell}\right. & \mid \boldsymbol{d}, \boldsymbol{g}, \boldsymbol{n}_{\text {corr }}, \xi_{n}, \Delta_{\mathrm{bp}}, \boldsymbol{a}, \beta
\end{array}\right)
$$

$+\sum_{j=1} \boldsymbol{a}_{\mathrm{src}}^{J}\left(\overline{v_{0, \mathrm{sc}}}\right) \quad$ PoInt sources
Beyond

BeyondPlanck data selection

- To highlight the method itself, only the following data are included in the current analysis:
- Planck LFI 30, 44 and 70 GHz time-ordered data
- Planck 857 GHz to constrain thermal dust intensity
- Planck 353 GHz polarization-only to constrain thermal dust polarization
- WMAP 33-61 GHz in T+P to constrain low-frequency foregrounds
- Haslam 408 MHz to constrain synchrotron intensity
- Intermediate Planck HFI and WMAP 23 GHz data are not included, because they have higher signal-to-noise ratios than Planck LFI

Key Differencesibetween BeyondPlanck and DR3/DR4

European
Commission

- BeyondPlanck analyzes all frequencies simultaneously, while Planck does it channel-by-channel; higher S / N and fewer degeneracies
- BeyondPlanck fits all parameters jointly, including the CMB dipole, gain and foregrounds etc.; Planck conditioned on many key parameters during low-level processing, including foreground model and CMB dipole
- BeyondPlanck uses external data from WMAP to constrain poorly measured CMB polarization modes; breaks key gain and foreground degeneracies
- BeyondPlanck performs 4000 iterations between instrument calibration and component separation, while Planck 2018 performed 4 iterations
- BeyondPlanck models correlated noise as a free time-domain stochastic parameter; allows for the first time correlated noise error propagation at all angular scales without the need of an expensive dense covariance matrix

Key Differencesibetween BeyondPlanck and DR3/DR4

- BeyondPlanck smooths the gain with an optimal Wiener filter, while Planck LFI used a boxcar average; significantly reduces striping, in particular at 44 GHz
- BeyondPlanck allows time-variable correlated noise parameters, while Planck assumed constant parameters throughout the mission
- BeyondPlanck uses a $\mathbf{1 / f} \mathbf{+}$ log-normal correlated noise model at $\mathbf{3 0 + 4 4} \mathbf{~ G H z}$, while Planck LFI used only a 1/f model; accounts for previously unknown noise excess around $0.1-1 \mathrm{~Hz}$
- BeyondPlanck corrects for several known bandpass issues, including standing waves; better consistency between detector maps
- BeyondPlanck accounts for bandpass leakage at the TOD level, using a WMAP-style spurious map optimization algorithm
- BeyondPlanck uses a minimal ADC correction that only affects the critical bits; less chance of accidentally filtering out real sky signal

Main product Ensemble of full sample sets

Instrument

Correlated noise

Synch Stokes Q

14

CMB Stokes Q

Synch pol β

Item	30 GHz	44 GHz	70 GHz	Sum
Data volume				
Uncompressed TOD volume	761 GB	1633 GB	5522 GB	7915 GB
Compressed TOD volume	86 GB	178 GB	597 GB	861 GB
Non-TOD-related RAM usage				659 GB
Total RAM requirements				1520 GB
Processing time (cost per run)				
TOD initialization/IO time	3.8 h	4.3 h	12.5 h	20.6 h
Other initialization				43.4 h
Total initialization				64.0 h
Gibbs sampling steps (cost per sample)				
Huffman decompression	1.1 h	1.8 h	7.1 h	10.0 h
TOD projection (P operation)	0.3 h	0.7 h	3.1 h	4.1 h
Sidelobe evaluation (s_{sl})	1.1 h	2.1 h	6.5 h	9.7 h
Orbital dipole ($s_{\text {orb }}$)	0.5 h	1.1 h	4.6 h	6.2 h
Gain sampling (g)	0.6 h	0.7 h	4.7 h	6.0 h
1 Hz spike sampling (s_{lhz})	0.2 h	0.3 h	1.9 h	2.4 h
Correlated noise sampling ($\boldsymbol{n}_{\text {corr }}$)	1.7 h	3.6 h	24.8 h	30.1 h
Correlated noise PSD sampling (ξ_{n})	3.3 h	4.0 h	1.1 h	8.4 h
TOD binning (P^{t} operation)	0.2 h	0.5 h	4.1 h	4.8 h
Sum of other TOD processing	1.3 h	2.5 h	10.9 h	14.7 h
TOD processing cost per sample	10.4 h	17.4 h	69.1 h	96.9 h
Amplitude sampling, $P(\boldsymbol{a} \mid \boldsymbol{d}, \omega \backslash \boldsymbol{a})$				23.9 h
Spectral index sampling, $P(\beta \mid \boldsymbol{d}, \omega \backslash \beta$)				40.3 h
Other steps				0.6 h
Total cost per sample				163.9 h

- Four independent Gibbs chains of 1000 samples were generated on 2 compute nodes
- Total wall production time for main run was 15 weeks
- Total CPU cost for main run was 600000 CPU hours
- For comparison, simulating one single traditional Planck Full Focal Plane 70 GHz realization costs $\mathrm{O}\left(10^{4}\right)$ CPU hours (Planck Collaboration 2016, A\&A, 596, A12)

Computational resource requirements

- Four independent Gibbs chains of 1000 samples were generated on 2 compute nodes
- Total wall production time for main run was 15 weeks
- Total CPU cost for main run was 600000 CPU hours
- For comparison, simulating one single traditional Planck Full Focal Plane 70 GHz realization costs O(104) CPU hours (Planck Collaboration 2016, A\&A, 596, A12)

Frequency maps: Posterior mean

```
European
Commission
```


Suur-Uski et al. (2022)
Beyond PIANGK

Frequency mhaps: 30 GHz minus WMAP K-band

Experiment	Amplitude [$\mu \mathrm{K}_{\text {CMB }}$]	Galactic coordinates		Reference
		$\begin{gathered} l \\ {[\mathrm{deg}]} \end{gathered}$	$\begin{gathered} b \\ {[\mathrm{deg}]} \end{gathered}$	
COBE ${ }^{\text {a,b }}$.	3358 ± 23	264.31 ± 0.16	48.05 ± 0.09	Lineweaver et al. (1996)
WMAP ${ }^{\text {c }}$.	3355 ± 8	263.99 ± 0.14	48.26 ± 0.03	Hinshaw et al. (2009)
LFI $2015^{\text {b }}$ HFI $2015^{\text {d }}$.	$\begin{array}{lll} 3365.5 & \pm 3.0 \\ 3364.29 & \pm & 1.1 \end{array}$	$\begin{aligned} & 264.01 \pm 0.05 \\ & 263.914 \pm 0.013 \end{aligned}$	$\begin{aligned} & 48.26 \pm 0.02 \\ & 48.265 \pm 0.002 \end{aligned}$	Planck Collaboration II (2016) Planck Collaboration VIII (2016)
$\underset{\text { HFI } 20188^{\mathrm{b}}}{\mathrm{~d}} \ldots . .$	3364.4 ± 3.1 3362.08 ± 0.99	$\begin{aligned} & 263.998 \pm 0.051 \\ & 264.021 \pm 0.011 \end{aligned}$	$\begin{aligned} & 48.265 \pm 0.015 \\ & 48.253 \pm 0.005 \end{aligned}$	Planck Collaboration II (2020) Planck Collaboration III (2020)
NPIPE ${ }^{\text {a,c. }}$,	3300.6 ± 2.0	263.986 ± 0.035	48.247 ± 0.023	Planck Collaboration Int. LVII (2020b)
BeyondPlanck ${ }^{\text {e }}$.	3362.7 ± 1.4	264.11 ± 0.07	48.279 ± 0.026	This paper

Statistical and systematic uncertainty estimates are added in quadrature.
Computed with a naive dipole estimator that does not account for higher-order CMB fluctuations.
Computed with a Wiener-filter estimator that estimates, and marginalizes over, higher-order CMB fluctuations jointly with the dipole.
Higher-order fluctuations as estimated by subtracting a dipole-adjusted CMB-fluctuation map from frequency maps prior to dipole evaluation. Estimated with a sky fraction of 68%. Error bars include only statistical uncertainties, as defined by the global BeyondPlanck posterior framework, and they thus account for instrumental noise, gain fluctuations, parametric foreground variations etc.

Excellent agreement between latest
BeyondPlanck results and HFI 2018

The ruture: Cosmoglobe

Beyond

Preliminary WMAPK+Ka+Q+V Cosmoglobe analysis

dat band nonopole
old band monopole
change to band monopole
hange to component monopole
6830000.000 -6242712.413
6242685.562 6242685.56
coss-correlation prior correction for
Number of linear fits (thresholds):
Drawing intersect to subtract from prior (mu, RMS)
New value 0.160

old value	0.940

Difference
0.780

Chain = 1 -- CG sample group $=$
CG initialize preconditioner, time $=4$ of 4

CG iter.	$1-\operatorname{res}=0.97903 \mathrm{E}+05$, tol $=$
CG iter.	$2-$ res $=$
C	

CG iter. $\quad 3 \quad$ res $=0.33104 \mathrm{E}+02$,

$0.47627 \mathrm{E}+18$, time $=$ $\begin{array}{ll}\text { CG iter. } & 6 \cdots \text { res }= \\ \text { CG iter. } & 7 \cdots \text { res }= \\ 0.26667 E-10, ~ t o l\end{array}=0.47627 \mathrm{E}+18$, time $0.47627 \mathrm{E}+18$
and monopole of '0.4-Haslam' used as zero-level prior
(Sampled value in CG: 585842.657)
Chain $=1-$ chisq $=0.12305728 \mathrm{E}+0$
Chain $=1 .-$ wall time $=\quad 16878.591$
Chain $=1$-- Iteration $=$
Processing TOD channel = LFI
Processing 030
Precomputing sidelobe convolved sky Sampling 1 Hz spikes
Sampling calibration, mode = abscal
Sampling calibration
relcal $=1.3362842 \mathrm{E}-02 \quad 7.8499957 \mathrm{E}-04-1.5765415 \mathrm{E}-03 \quad-1.2571299 \mathrm{E}-02$
Sampling calibration, mode = deltaG
Sampling ncorr, xi_n, maps
Finalizing maps, bp
Finished processing 030

Processing TOD channel = LFI
Processing 044
Precomputing sidelobe convolved sky

$$
\begin{aligned}
& \text { > Sampling } 1 \mathrm{~Hz} \text { spikes } \\
& \gg \text { Sampling calibration }
\end{aligned}
$$

abscal $=0.00631769$
\rightarrow Sampling calibration, mode $=$ relcal
relcal $=-2.8177381 \mathrm{E}-03$
$-7.0284383 \mathrm{E}-04$
6.4215600 E
$1.6767760 \mathrm{E}-03$
$1.6108982 \mathrm{E}-03$
4.0934808E-04 $6.4225600 \mathrm{E}-04$

Sampling calibration, mode $=$ deltaG
Sampling ncorr, xi_n, maps

Milestone reached on May 18th, 2022:
First end-to-end sample of Planck LFI and WMAP K-V successfully produced in about five hours runtime!

LFI 30-0.495 x WMAP K

Lots of great stuff coming up soon. If you want to join, please contact Duncan Watts and the Cosmoglobe team :-)

Planck 2018

○ В https://www.cosmoglobe.uio.no/products/index.html

Products

BeyondPlanck release 2 (2022; final release)

- Parameter files (documentation)
- Main Commander parameter file
- Commander parameter file for high-resolution CMB TT resampling Commander parameter file for low-resolution CMB polarization resamplin
- Chain Files (documentation)

Main chain files ($1,2,3,4$; note: these are 1.6 TB each $)$

- High-res CMB T resamp chain files $(1,2,3,4)$
- Low-res CMB P resamp chain files $(1,2,3,4)$
- Frequency Maps
- LFI 30 GHz frequency map
- LFI 44 GHz frequency map
- LFI 70 GHz frequency map
- Astrophysical Component Maps
- AME (spinning dust) map
- Thermal dust emission map
- Free-free emission map
- Synchrotron map
- CMB maps

CMB posterior mean temperature map

- CMB posterior mean polarization map
- Single constrained CMB realisation

- Masks

- High-resolution CMB (T-only) analysis mask

Low-resolution CMB (T+P) analysis mask

- Likelihood (coming soon)

CMB likelihood (code and data)
CMB Temperature angular power spectrum
Best-fit CMB LCDM power spectrum
For the preliminary BeyondPlanck release 1 products (released in 2020), see the BeyondPlanck webpage

BeyondPlanck X. Bandpass and beam leakage corrections
T. L. Svalheim, K. J. Andersen, R. Aurien, R. Banerji, M. Bersanelli, S. Bertocco, M. Brilenkov, M. Carbone, L. P. L. Colombo, H. K. Eriksen, M. K. Foss, C

Franceschet, U. Fuskeland, S. Galeotta, M. Galloway, S. Gerakakis, E. Gjerlow, B. Hensley, et al.
Received: 10 January 2022 / Accepted: 25 February 2022
ol: https://doi.org/10.1051/0004-6361/202243080
PDF (15.86 MB)

BeyondPlanck. XVI. Limits on large-scale polarized anomalous mcrowave emission from Planck LFI and WMAP
D. Herman, B. Hensley, K.J. Andersen, R. Aurlien, R. Banerji, M. Bersanelli, S. Bertocco, M. Brilenkov, M. Carbone, L. P. L. Colombo, H. K. Eriksen, M. K. Foss, C. Franceschet, U. Fuskeland, S. Galeotta, M. Galloway, S. Gerakakis, et al.
Received: 10 January 2022 / Accepted: 31 March 2022
O: https://doi.org/10.1051/0004-6361/202243081
PDF (5.353 MB)

Free Access

BeyondPlanck. III. Commander3
M. Galloway, K. J. Andersen, R. Aurlien, R. Banerij, M. Bersanelli, S. Bertocco, M. Brilenkov, M. Carbone, L. P. L. Colombo, H. K. Eriksen, J. R. Eskilt, M. K. Foss, C. Franceschet, U. Fuskeland, S. Galeotta, S. Gerakakis, et al.
Received: 17 January 2022 / Accepted: 25 February 2022
DO: https://doi.org/10.1051/0004-6361/202243137
PDF (1.582 MB)

BeyondPlanck VIII. Efficient sidelobe convolution and corrections through spin harmonics
M. Galloway, M. Reinecke, K. J. Andersen, R. Aurrien, R. Banerji, M. Bersanelli, S. Bertocco, M. Brilenkov, M. Carbone, L. P. L. Colombo, H. K. Eriksen, J. R. Eskilt, M.
K. Foss, C. Franceschet, U. Fuskeland, S. Galeotta, S. Gerakakis..

Received: 17 January 2022 / Accepted: 18 March 2022
DO: https://doi.org/10.1051/0004-6361/202243138
PDF (6.029 MB)
BeyondPlanck XV. Polarized foreground emission between 30 and 70 GHz
T. L. Svalheim, K. J. Andersen, R. Aurien, R. Baneri, M. Bersanelli, S. Bertocco, M. Brilenkov, M. Carbone, L. P. L. Colombo, et al.

Received: 19 January 2022 / Accepted: 21 February 2022
DOI: https://doi.org/10.1051/0004-6361/20224316
PDF (24.05 MB)

more coming soon!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

- "BeyondPlanck"
- COMPET-4 program
- PI:

Hans Kristian Eriksen

- Grant no.:

776282

- Period:

Mar 2018 to Nov 2020

Collaborating projects:

- "bits2cosmology"

```
- ERC Consolidator Grant
- PI: Hans Kristian Eriksen
- Grant no: 772 253
- Period: April 2018 to March 2023
```

- "Cosmoglobe"

\circ	ERC Consolidator Grant	
\circ	PI:	Ingunn Wehus
\circ	Grant no:	819478
\circ	Period:	June 2019 to May 2024

- Grant no: 819478
- Period: June 2019 to May 2024
 HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

27

HAVERFORD
planetek hellas

