Foreground removal for B-mode detection with Clustering methods

Giuseppe Puglisi

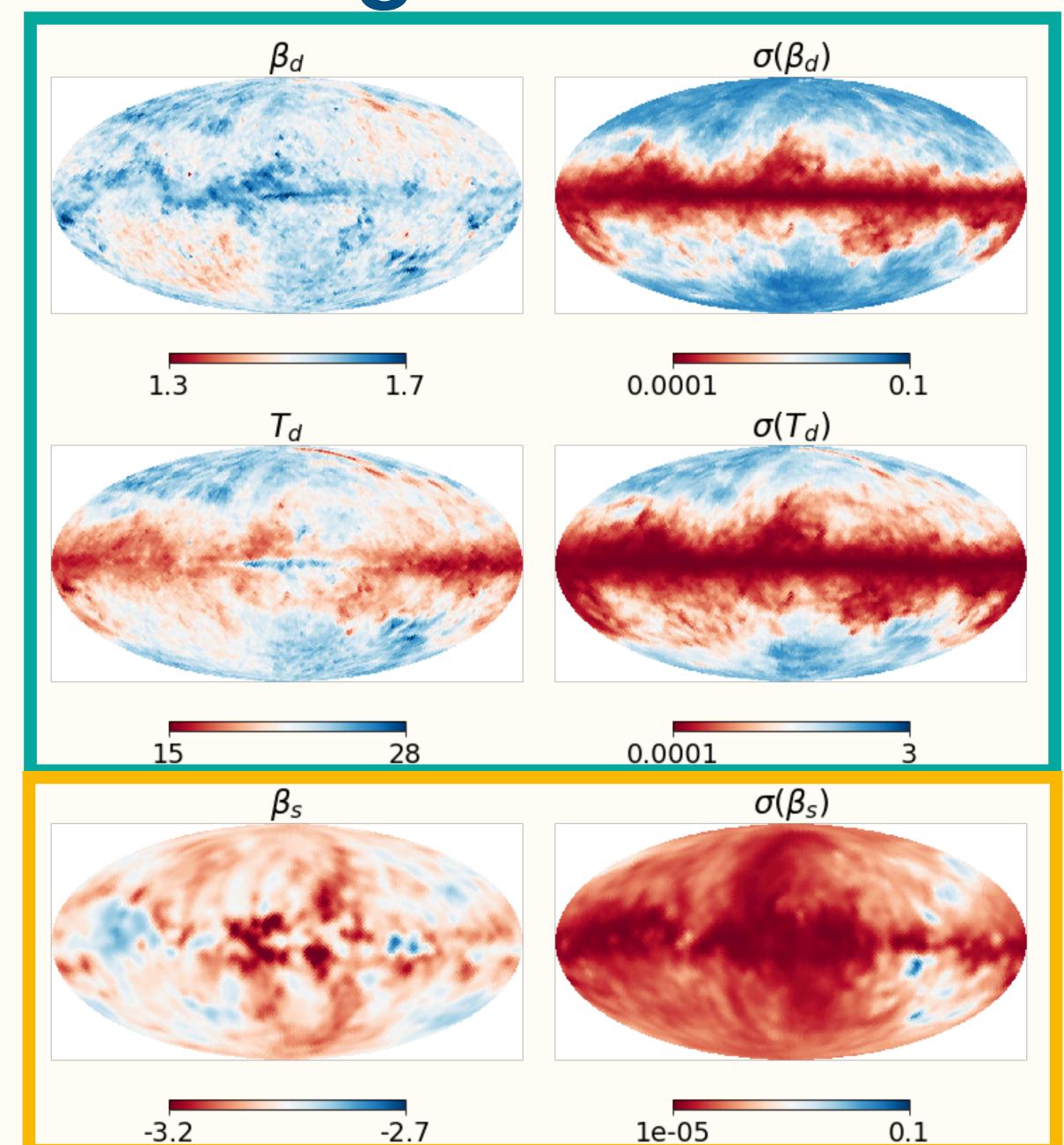
From Planck to the future of CMB

May, 23-27 2022, Ferrara

Tor Vergata

Spatial variability of Galactic foregrounds <u>G. Puglisi et al. 2022</u> β_d

- Spatial variability is hard to be tackled in both blind and non -blind comp sep approaches (-> See A. Carones Poster)
- However, in general Galactic emission could vary along the l.o.s and in different 1.0.S



1e-05

Spatial variability of Galactic foregrounds

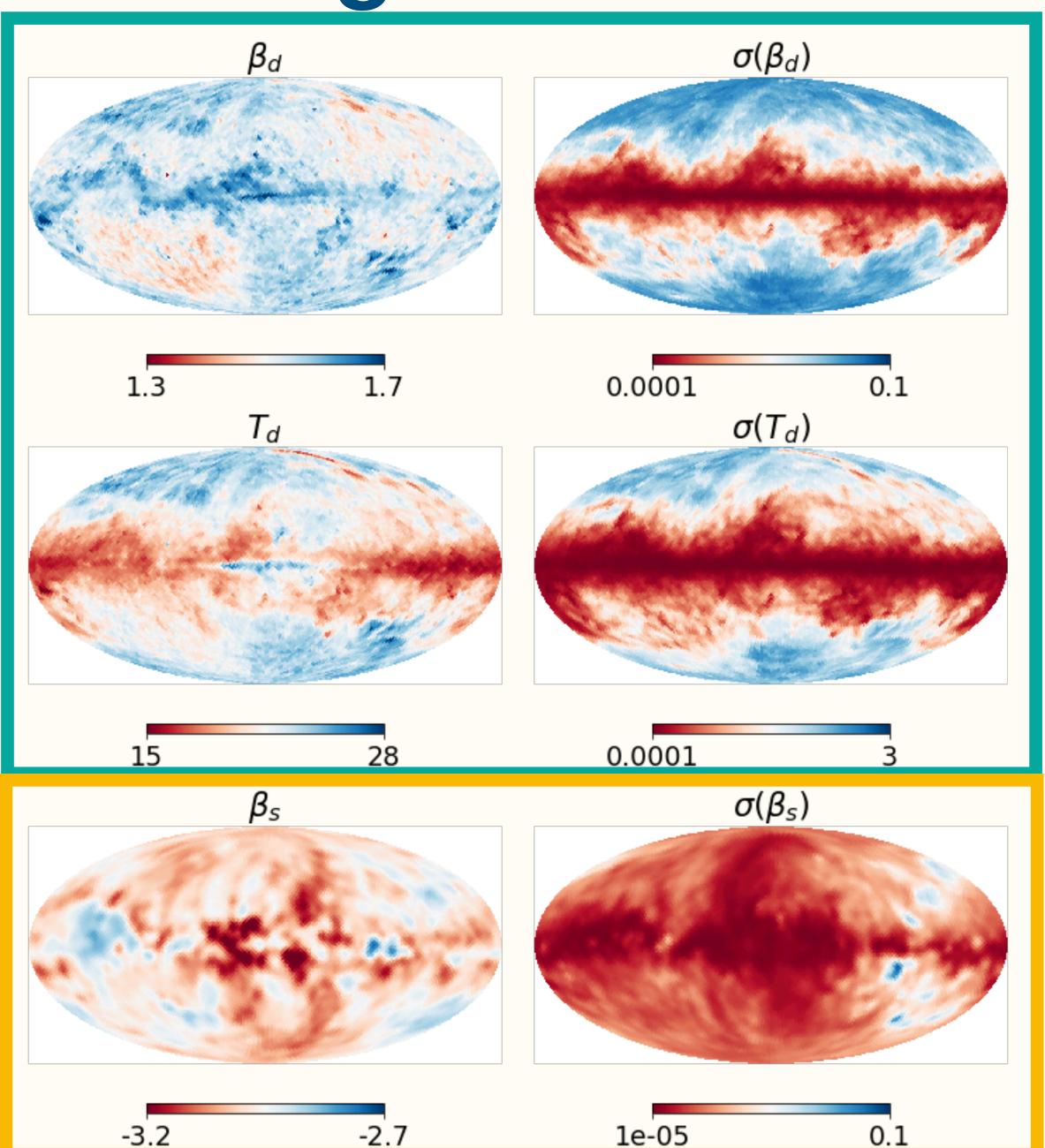
3

$I_{\nu}^{dust}(\hat{n}) \propto \nu^{\beta_d(\hat{n})} B_{\nu}(T_d(\hat{n}))$

- PySM `d1` (Thorne et al. 2017)
- Spectral Parameters β_d , T_d
- Templates derived from Commander Planck Collaboration 2015.X

$$I_{\nu}^{synch}(\hat{n}) \propto \nu^{\beta_s(\hat{n})}$$

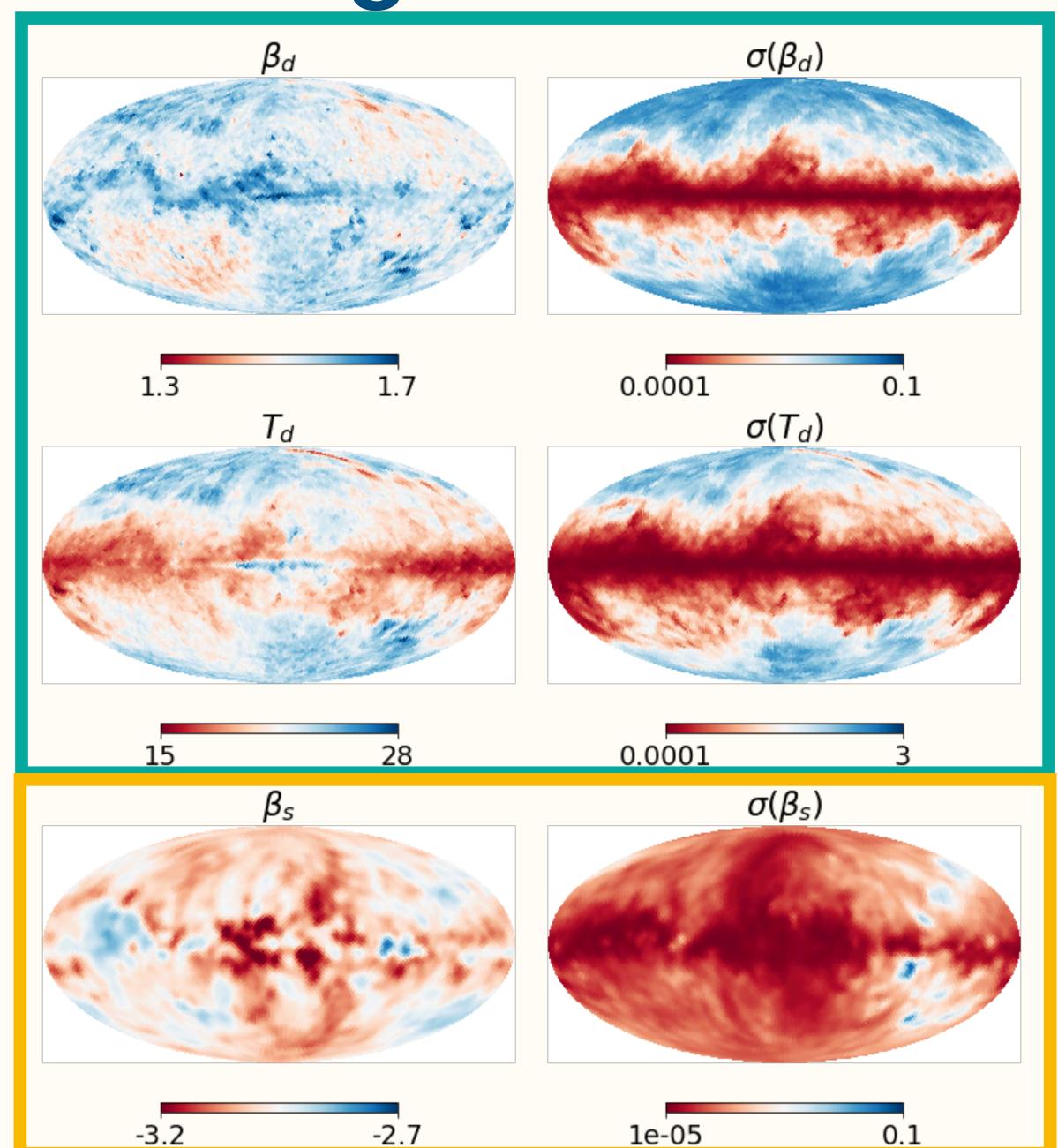
- PySM`s1`
- Spectral Parameter : β_s
- Template from WMAP 2011&Miville
 Deschenes 2008 template



Spatial variability of Galactic foregrounds

 Clustering methodologies (Grumit et al. 2019, Khatri 2018) employed to divide the sky into multiple domains

GOAL: to identify an *optimal partition* of Galactic emission to reduce B-mode residuals



For a given pixel in a β map, the Affinity accounts for :

For a given pixel in a β map, the Affinity accounts for :

• geometrical affinity (nearest neighbors pixels are considered the most similar)

For a given pixel in a β map, the Affinity accounts for :

- geometrical affinity (nearest neighbors pixels are considered the most similar)
- statistical affinity : we group pixels whose spectral param. Values are compatible to 2σ C.L.

		β		
	<2 σ	<2 <i>σ</i>	>2 <i>o</i>	
	< 2 <i>σ</i>	<2 <i>σ</i>	>2 <i>o</i>	>20
<2 <i>σ</i>	<2 <i>σ</i>		< 2 <i>σ</i>	>20
> 2 σ	>2 <i>o</i>	<2 <i>σ</i>	<2 <i>σ</i>	

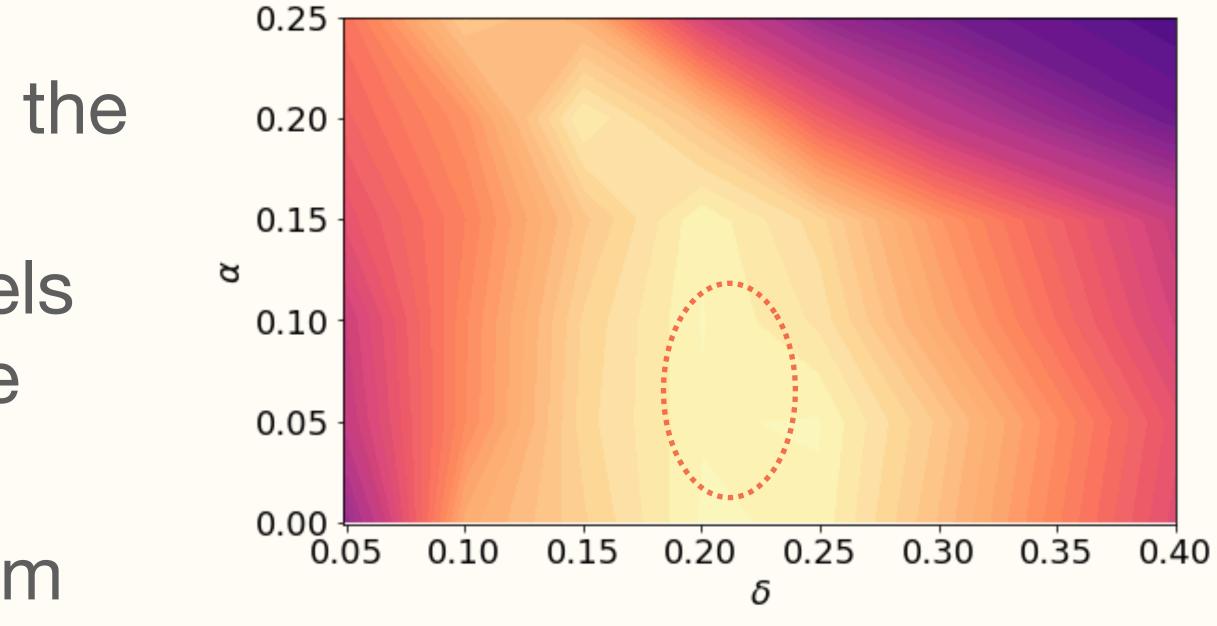
For a given pixel in a β map, the Affinity accounts for :

- geometrical affinity (nearest neighbors pixels are considered the most similar)
- statistical affinity : we group pixels whose spectral param. Values are compatible to 2σ C.L.
- Employ the clustering routine from sklearn.Clustering package

		p		
	< 2 <i>σ</i>	<2 σ	>2 <i>o</i>	
	<2 <i>σ</i>	< 2 <i>σ</i>	>2 <i>o</i>	>20
<2 σ	<2 σ		<2 <i>σ</i>	>20
>2 <i>o</i>	>20	< 2 <i>σ</i>	< 2 σ	

For a given pixel in a β map, the Affinity accounts for :

- geometrical affinity (nearest neighbors pixels are considered the most similar)
- statistical affinity : we group pixels whose spectral param. Values are compatible to 2σ C.L.
- Employ the clustering routine from sklearn.Clustering package
- Optimal configuration at minimum within and between cluster variance



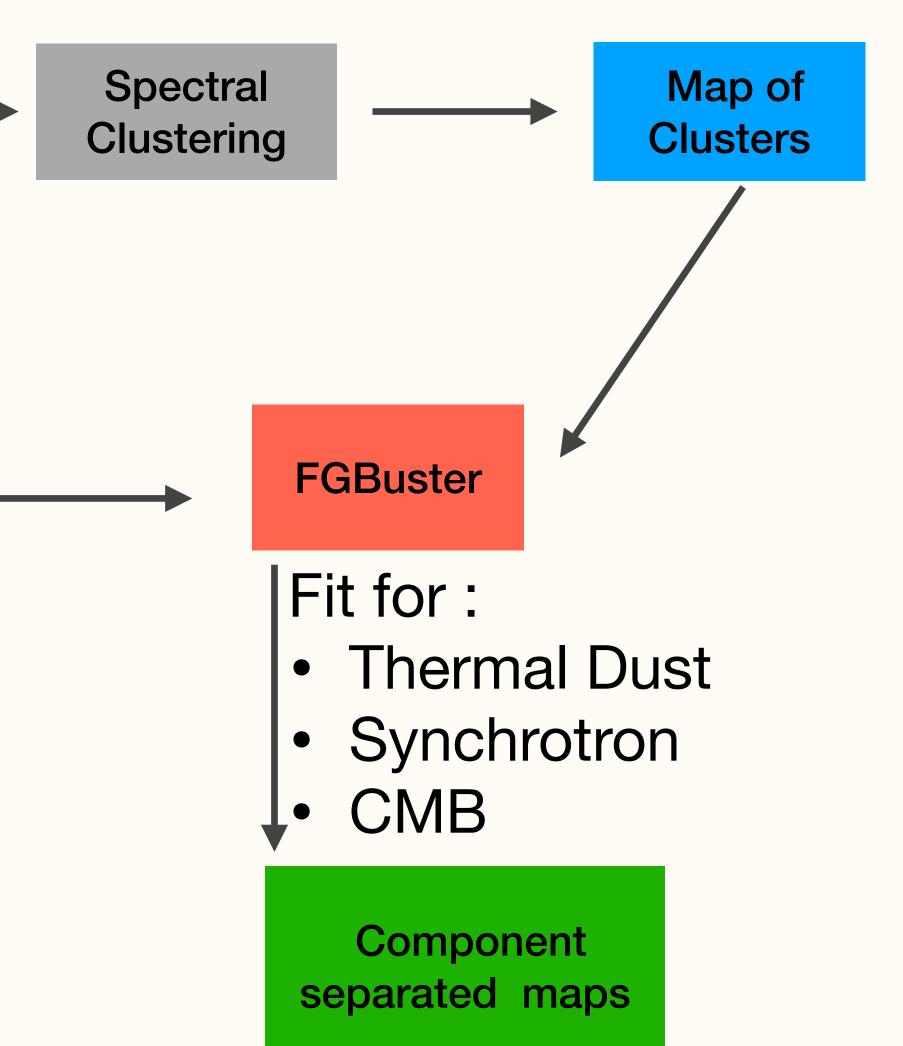
- 0.60	
- 0.48	
- 0.36	
- 0.24	
- 0.12	
- 0.00	
0.12	
0.24	

Clustering + Parametric Component Separation

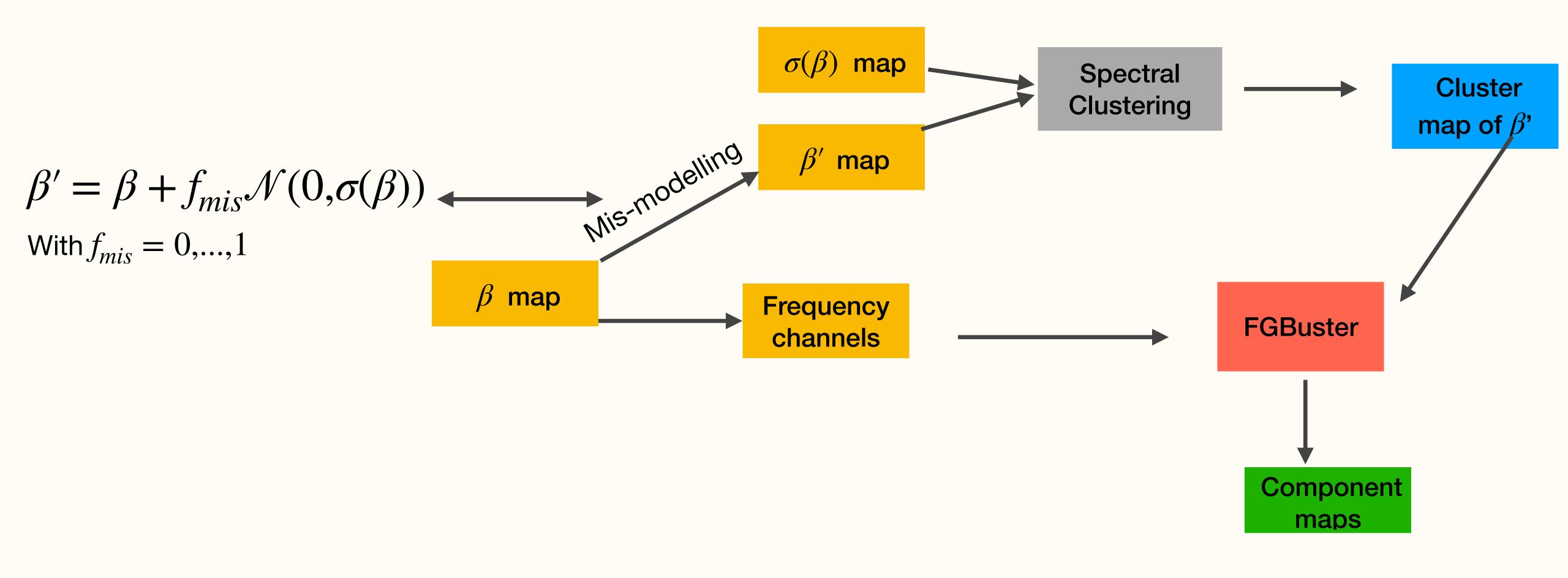
Input Template Maps and uncertainties

Frequency channels Simulation (d1s1 pysm)

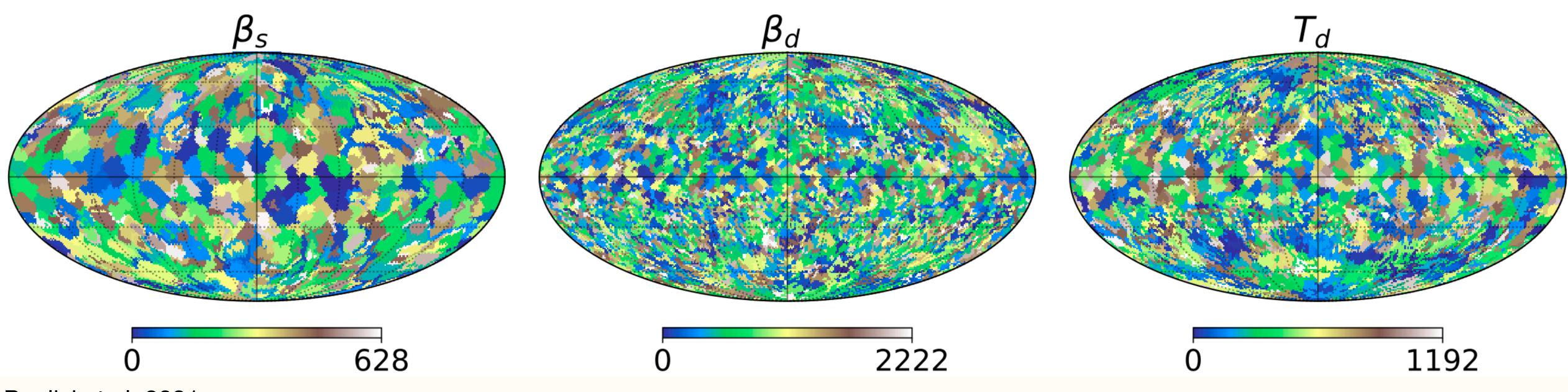
- LiteBIRD : 15 freq. bands 40-402 GHz
- **SO-SAT**: 6 freq. bands 27-270 GHz



Application #1: Clustering on Spectral Parameters

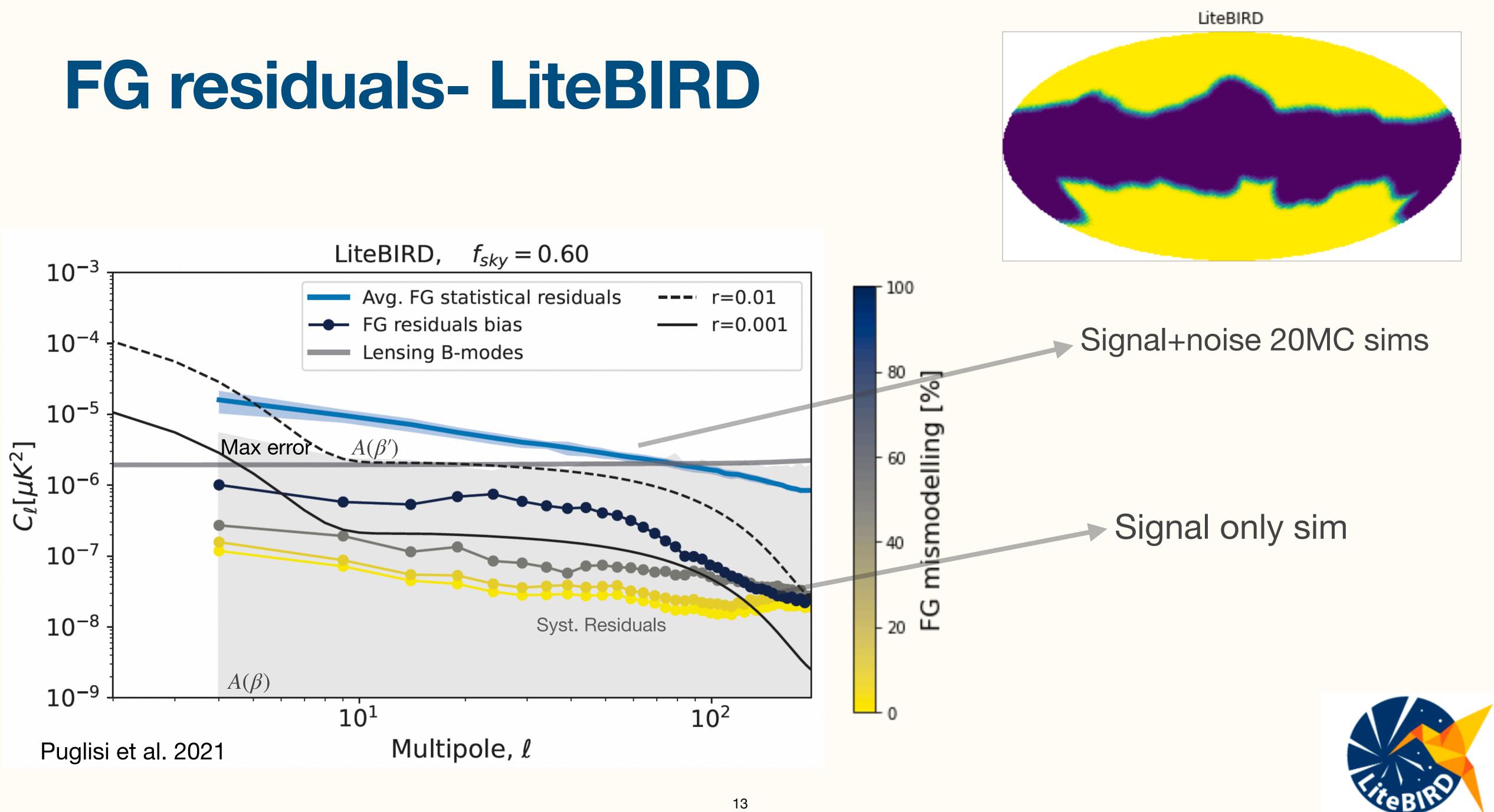


Application #1: Clustering on Spectral Parameters

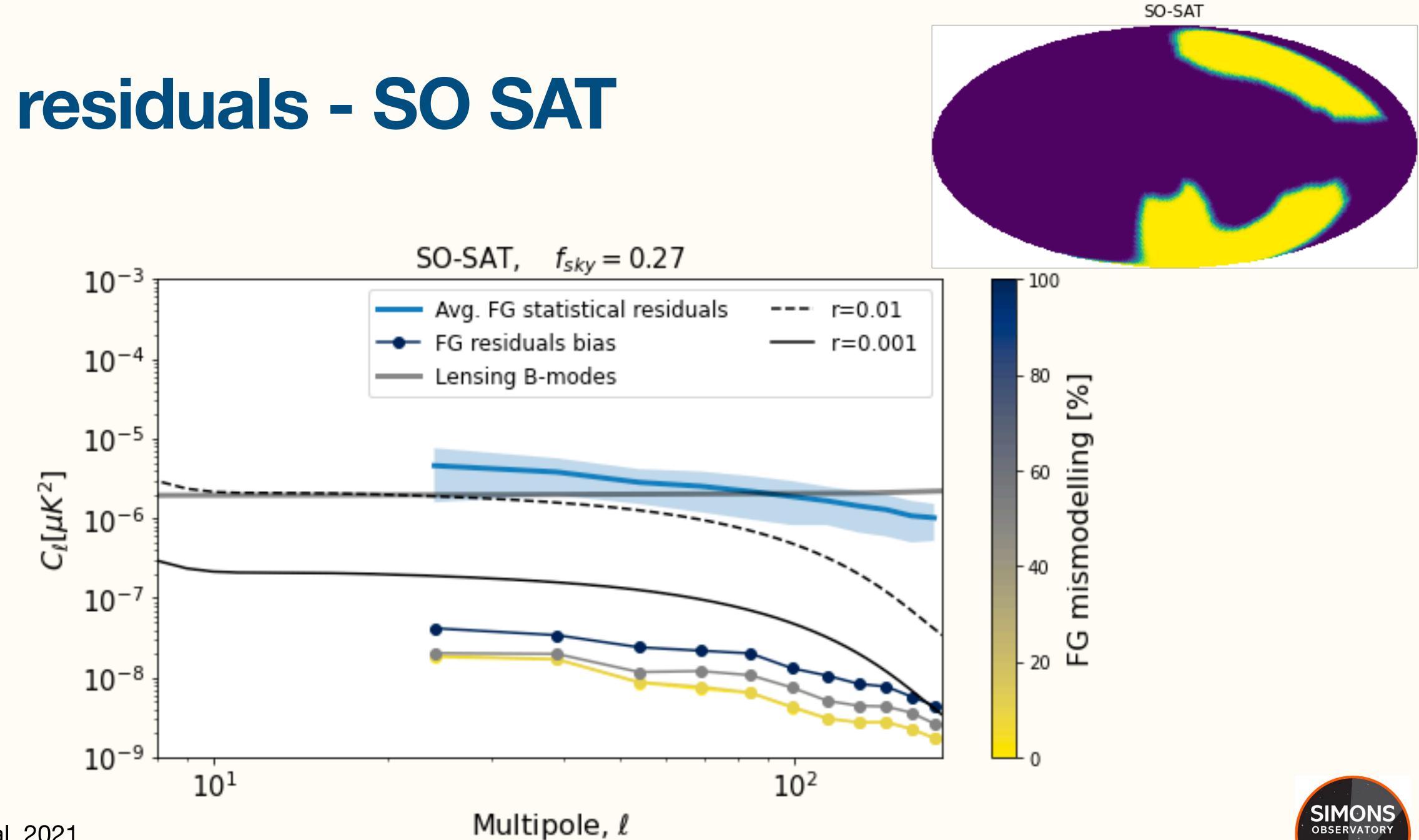


Puglisi et al. 2021

Different colors => different clusters Cluster shape and size : defined by angular resolution and SNR



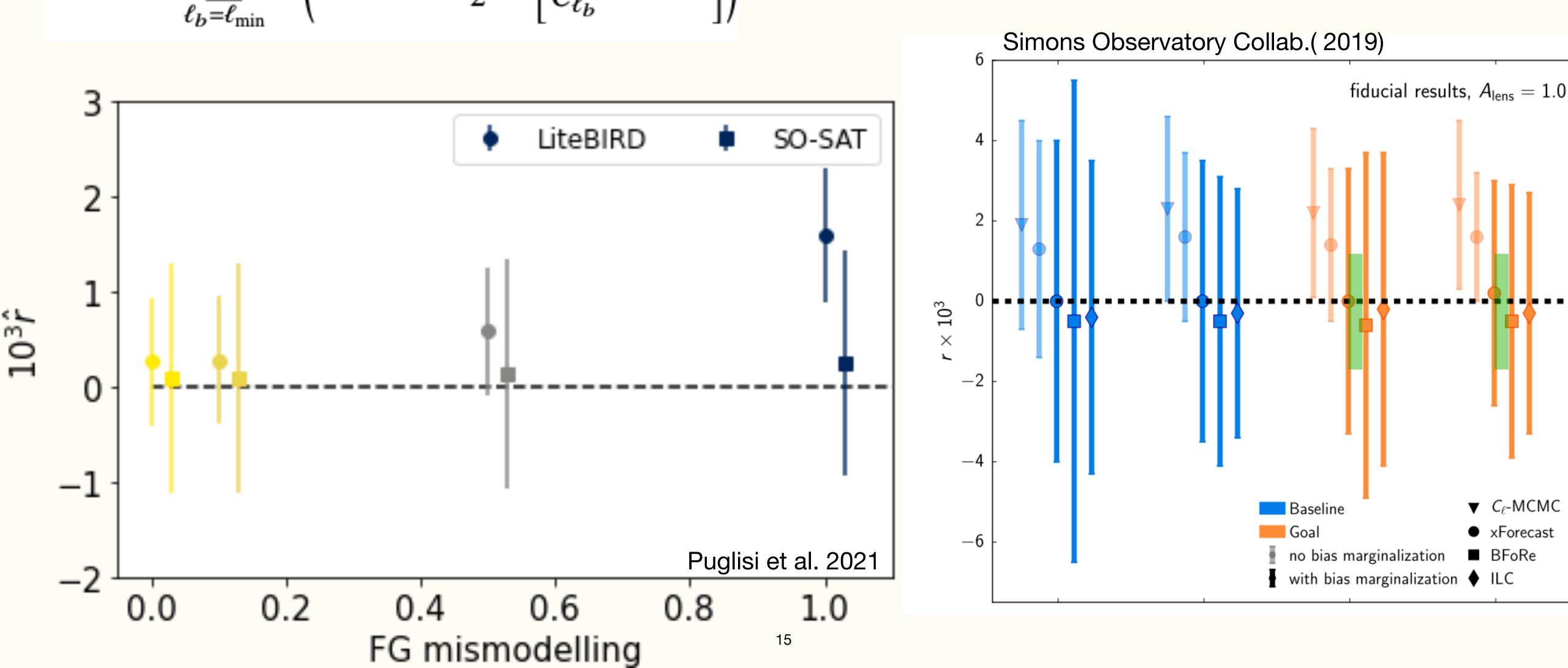
FG residuals - SO SAT



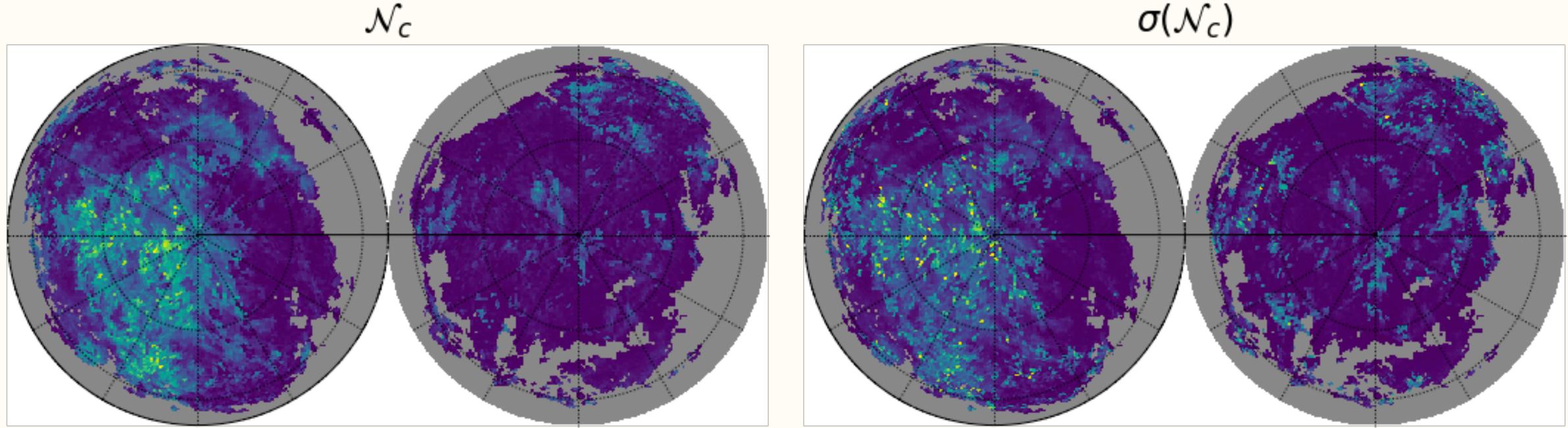
Puglisi et al. 2021

r - estimates

$$\ln \mathcal{L}(r) = \sum_{\ell_b = \ell_{\min}}^{\ell_{\max}} \ln \left(-f_{sky} \Delta \ell \frac{2\ell_b + 1}{2} \left[\frac{\hat{C}_{\ell_b}}{C_{\ell_b}} + \ln C_{\ell_b} \right] \right)$$



Application#2 : Clusters on number of clouds along l.o.s.

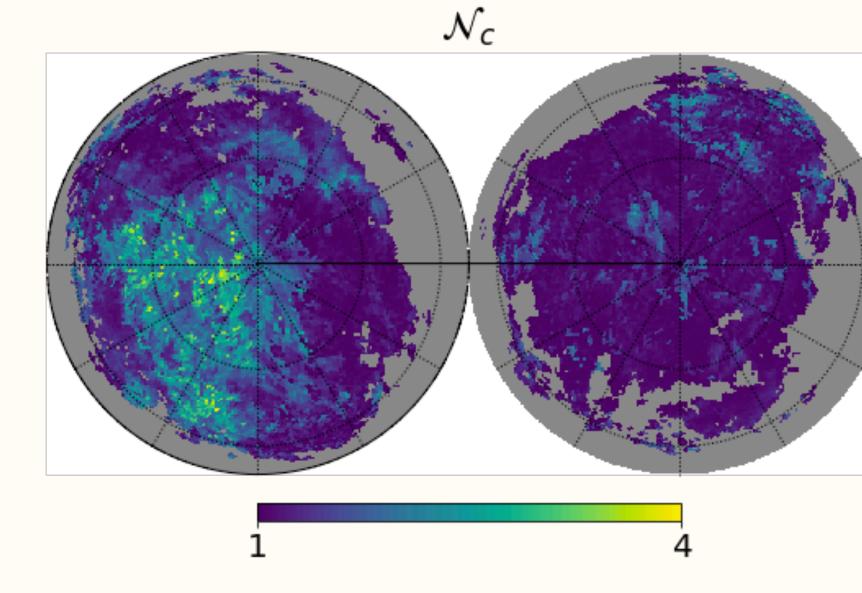


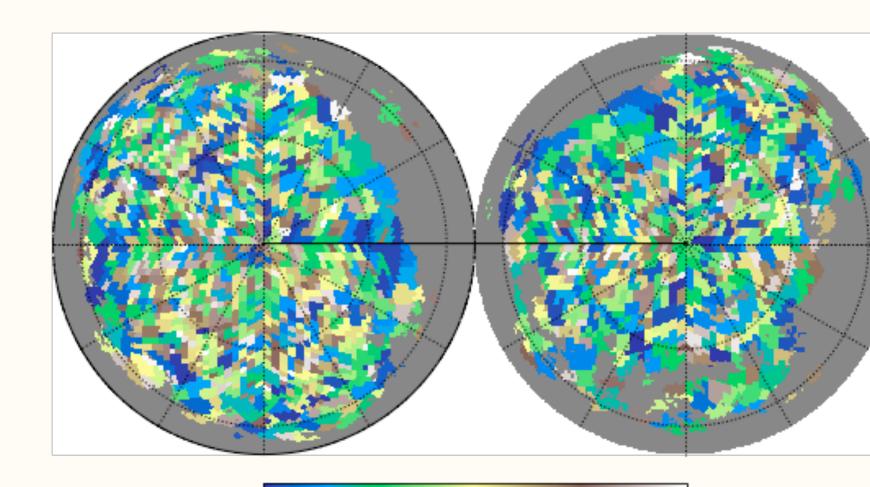
Lenz & Panoupolou 2020

 $\sigma(\mathcal{N}_c)$

0.3

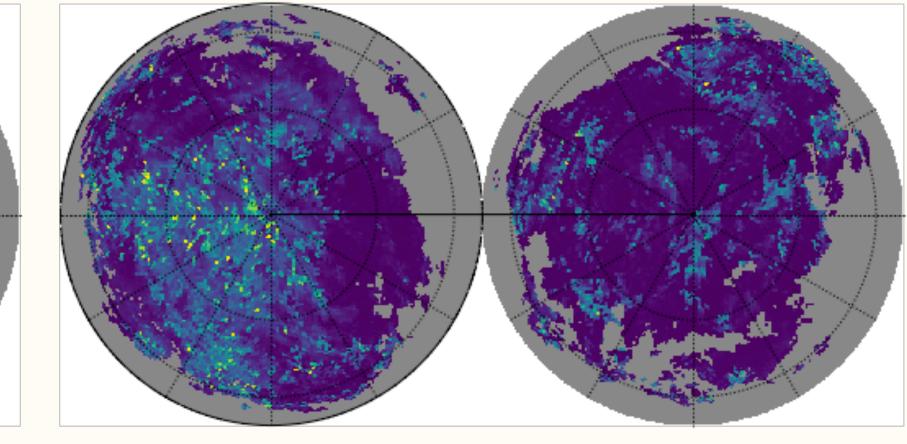
Clusters on number of clouds

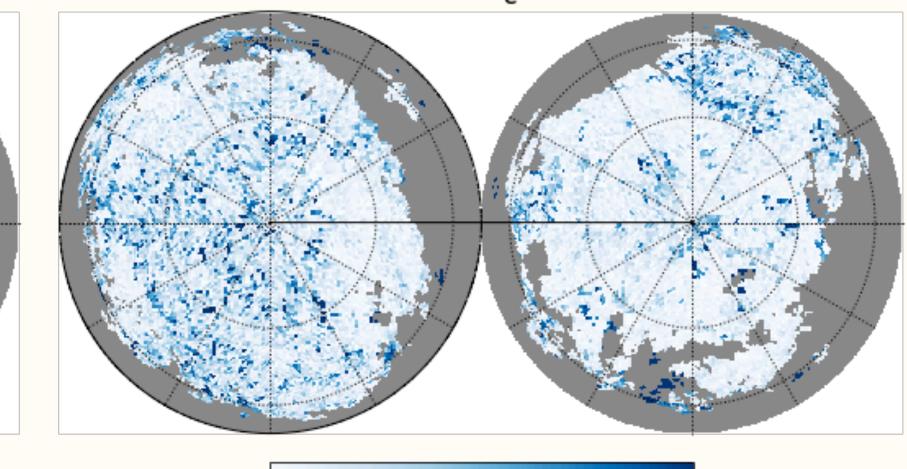




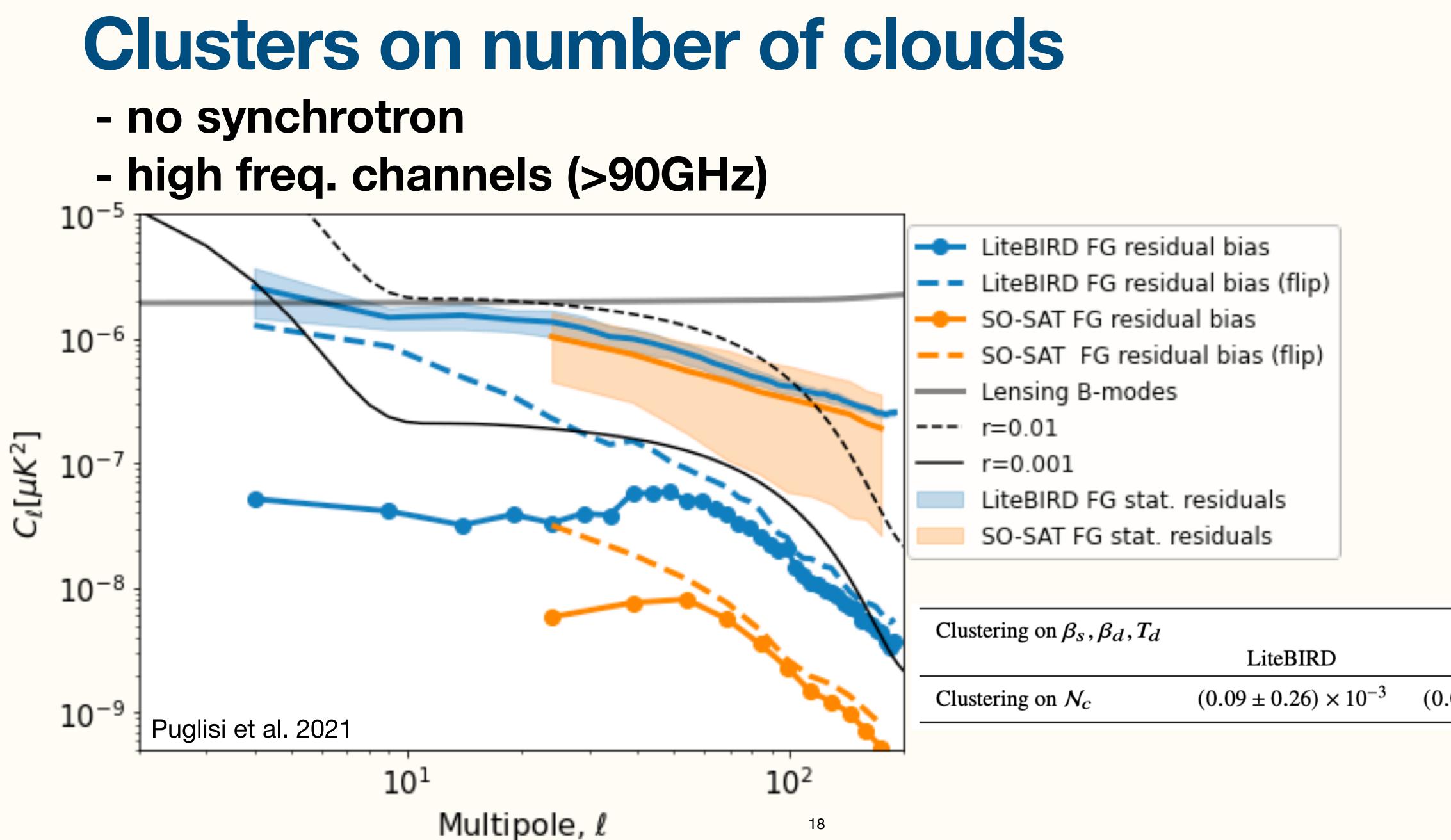
cluster ID 1481

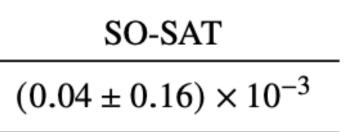
 $\sigma(\mathcal{N}_c)$





0.5



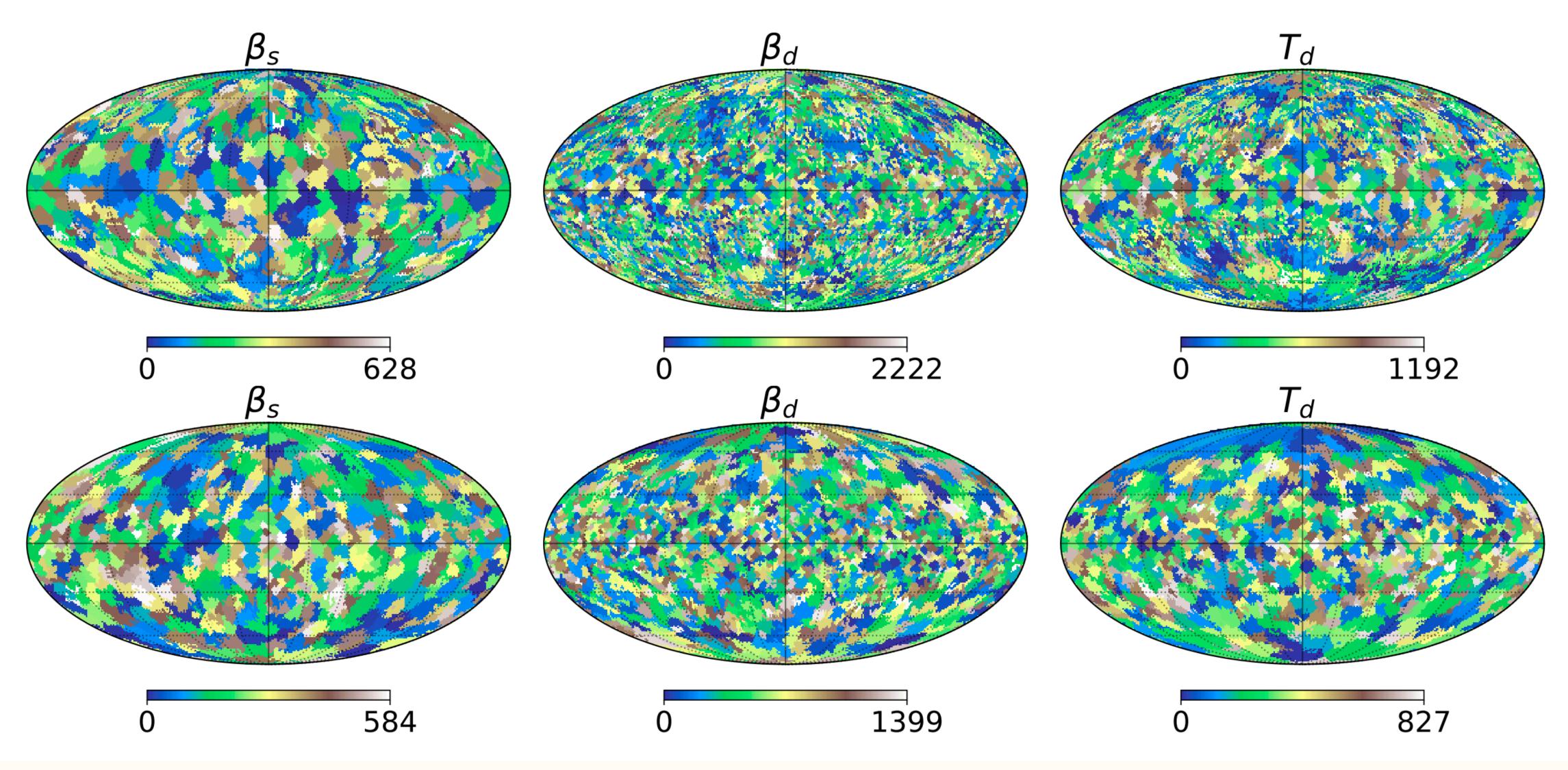


Summary

- We propose a novel methodology for ancillary supporting traditional comp sep techniques
- We tested the component separation with clusters derived by assuming several mismodelling levels of the spectral parameter
- We exploit the information from the Nc map (Lenz&Panopoulou 2020) as a a tracer for thermal dust and derived clusters from Nc.
- Estimates on r are within the level of requirements of SO and Litebird •
- **FGcluster** and cluster maps have been made publicly available online at <u>https://</u> \bullet github.com/giuspugl/fgcluster
- Application to Needlet-ILC on going at UniTorvergata (see A. Carones Poster)

Backup

Clusters obtained with mismodelled parameters



Parametric Component Separation

We can express multi-freq. maps of a generic CMB experiment as

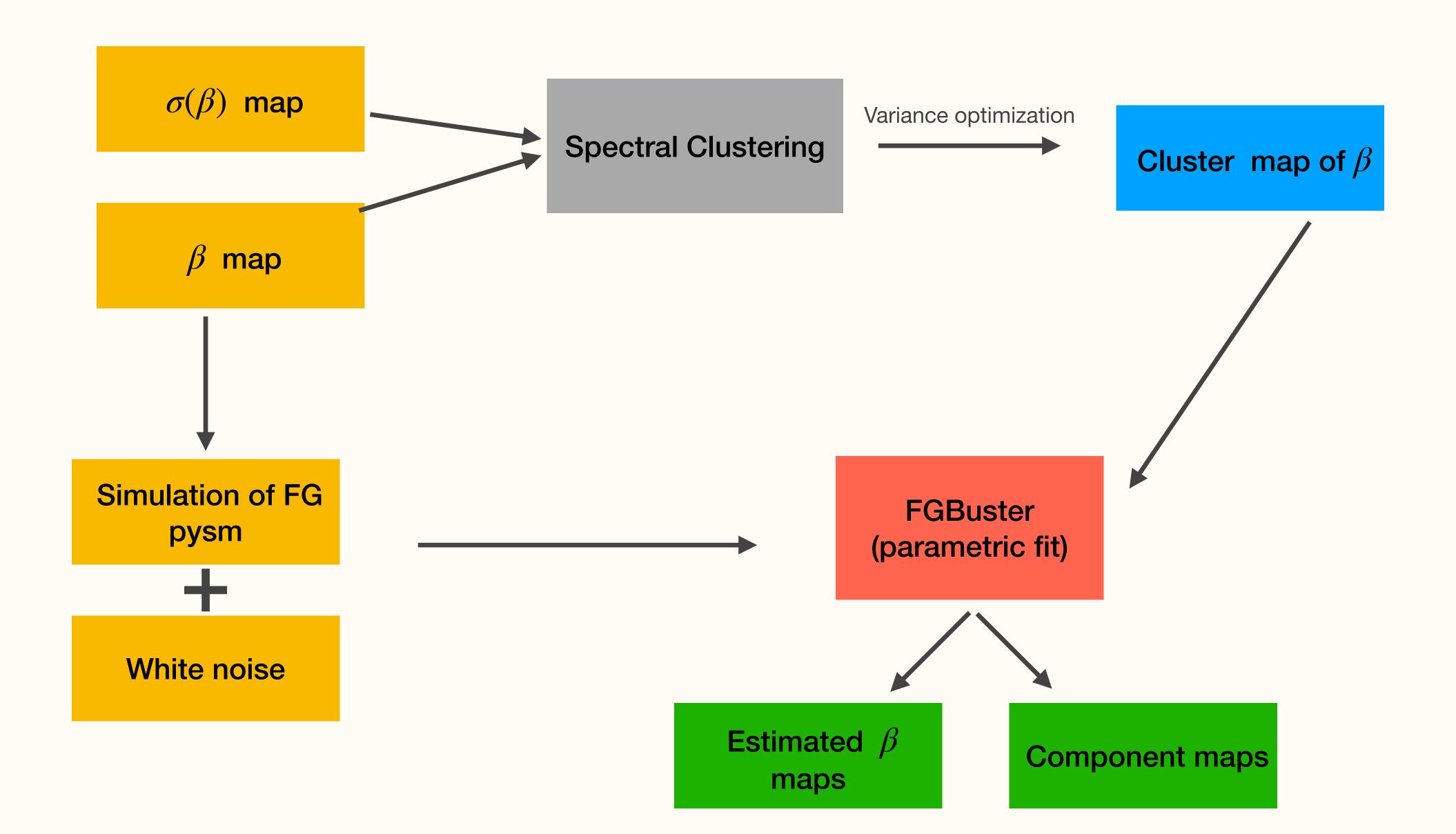
$$m_{\nu}(\hat{n}) = A_s f_s^{\nu}(\hat{n};\beta_s) + A_d f_d^{\nu}(\hat{n};\beta_d,T_d) + A_{cmb} f_{cmb}^{\nu} + n_{\nu}(\hat{n})$$
$$m = A(\beta) s + n$$

With some assumptions on the emission model and its spatial variability, i.e. A, it is possible to parametrically get an estimate of the vector \hat{s} , via the max likelihood:

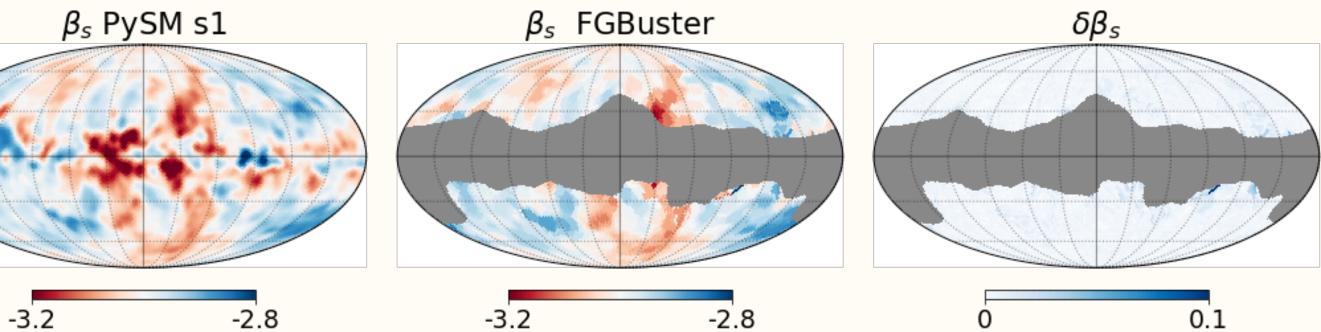
 $\ln \mathscr{L}(s,\beta) \propto (m-As)^t N^{-1} (m-As)^t N^{-1}$

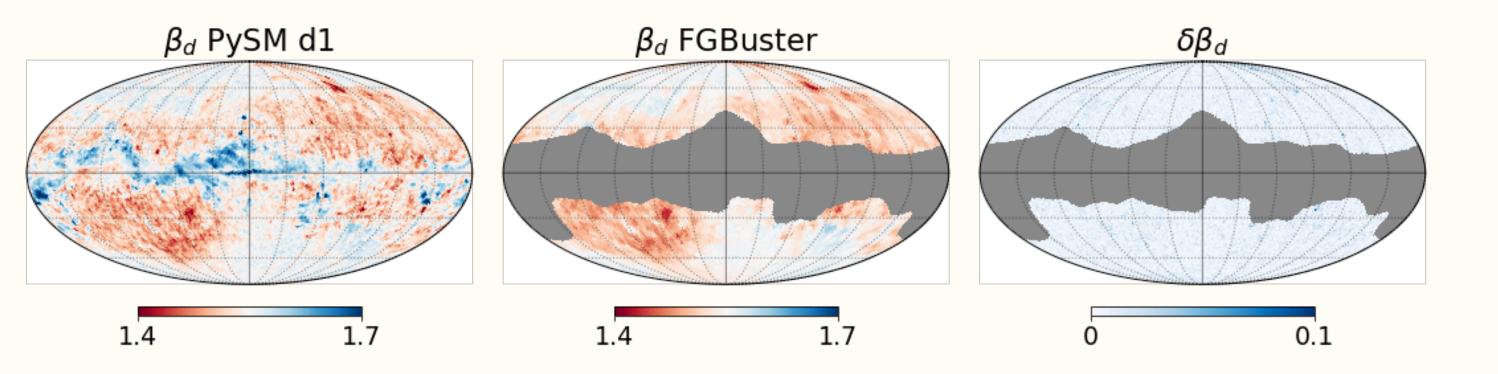
$$As) + const$$

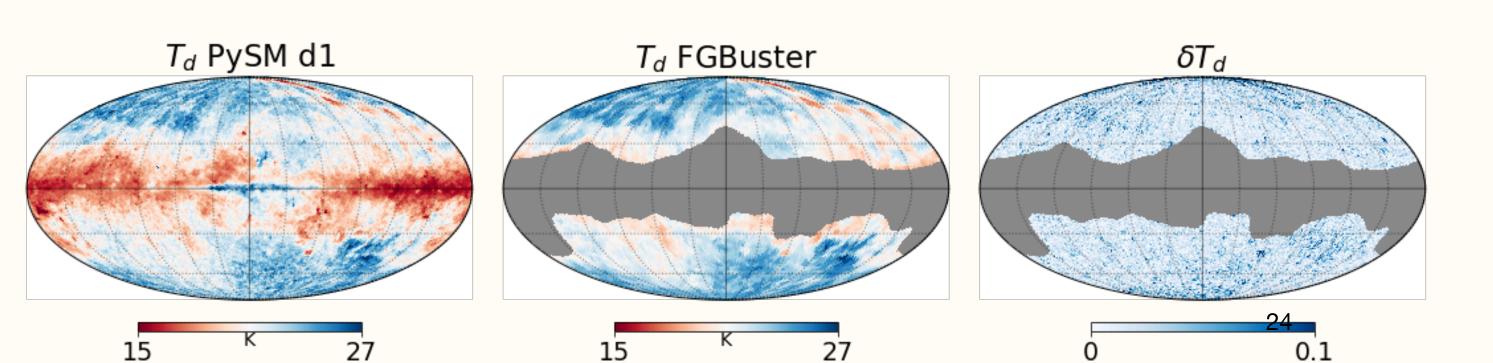
Clustering + Compsep Pipeline

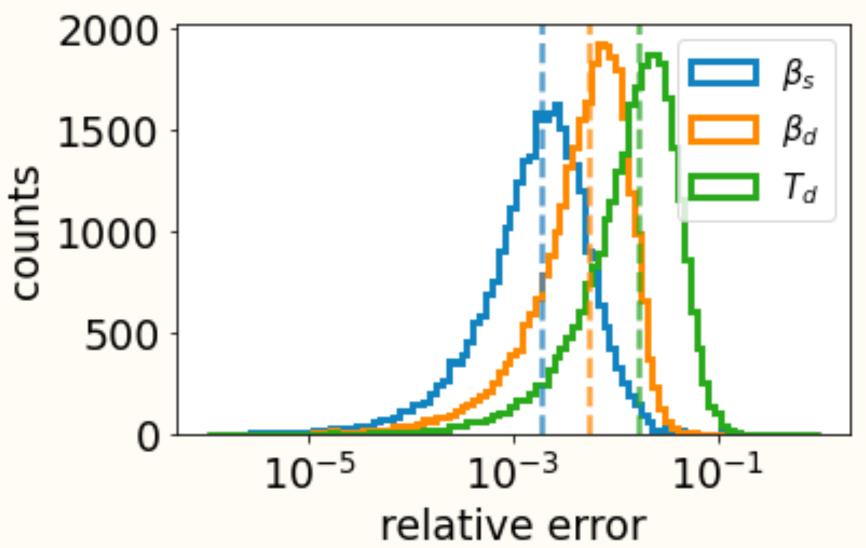


FGBuster on clusters





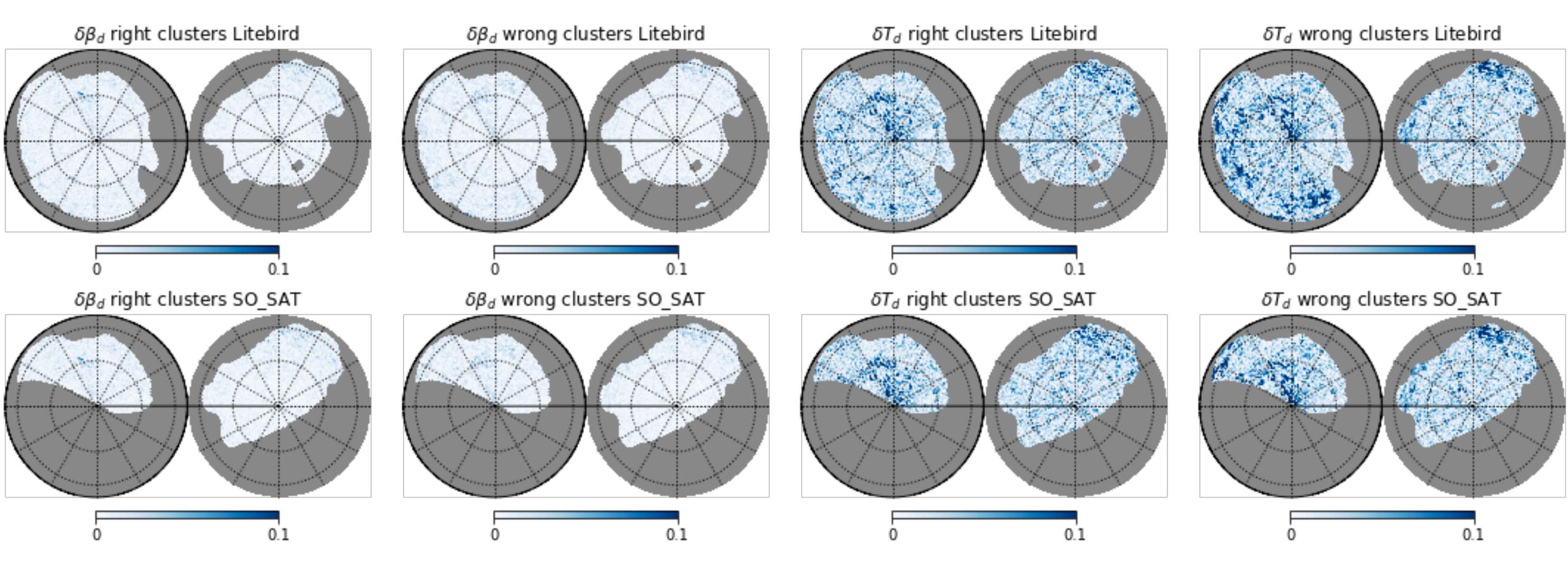




/!\ In an ideal case we are tracking very well the spectral parameters !

Flip test w/ Nclouds We flip the cluster in the Southern cap with the Northern ones, perform comp-sep

Relative error on Bd and Td estimates



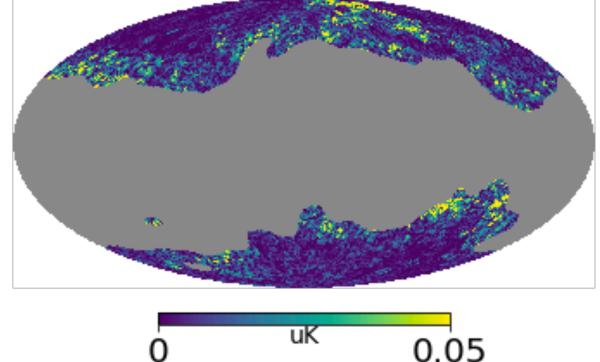
Flip test w/ Nclouds

- We notice an increase in both the relative error on Bd and Td and in the CMB- P residuals
- They result residuals in the power spectra 10^{-5} LiteBIRD FG residual bias LiteBIRD FG residual bias (flip) SO-SAT FG residual bias 10-6 SO-SAT FG residual bias (flip) Lensing B-modes r=0.01 C⁷[hK²] r=0.001 LiteBIRD FG stat. residuals SO-SAT FG stat. residuals 10^{-8} 10-9 10¹ 10² Multipole, ℓ

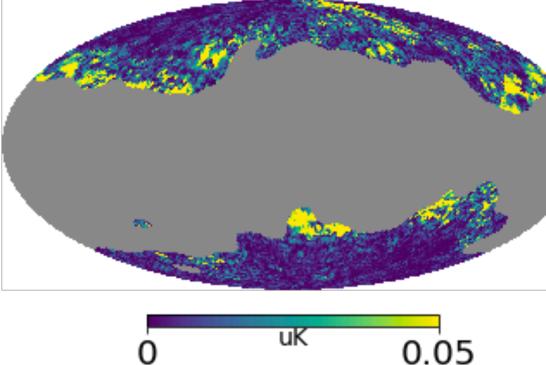
We flip the cluster in the Southern cap with the Northern ones, perform comp-sep

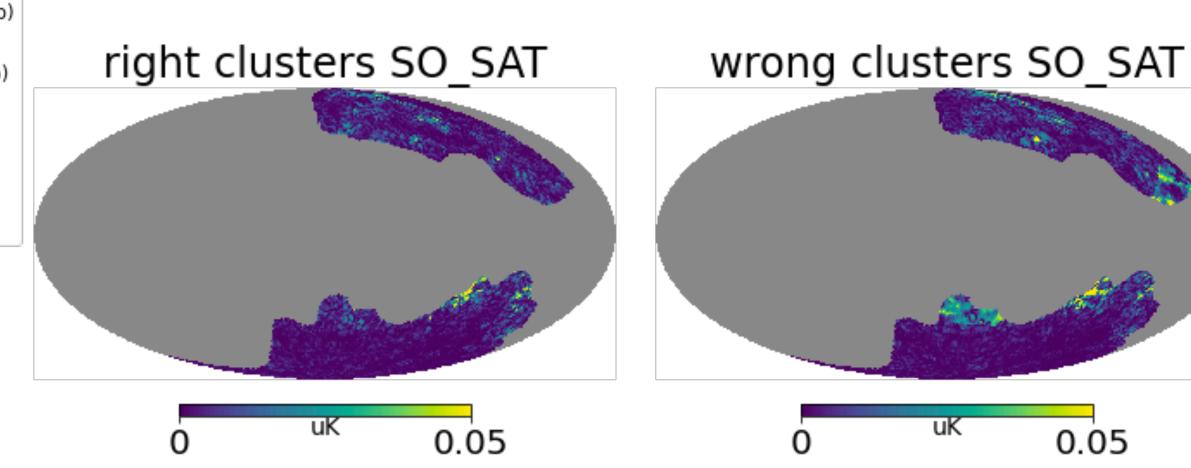
CMB P residuals

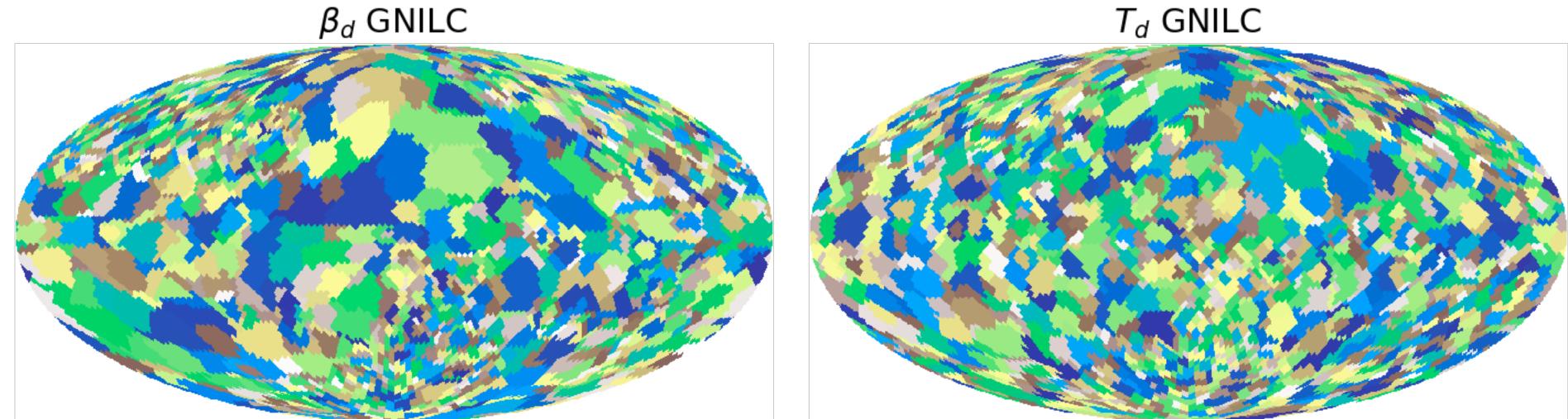
right clusters Litebird

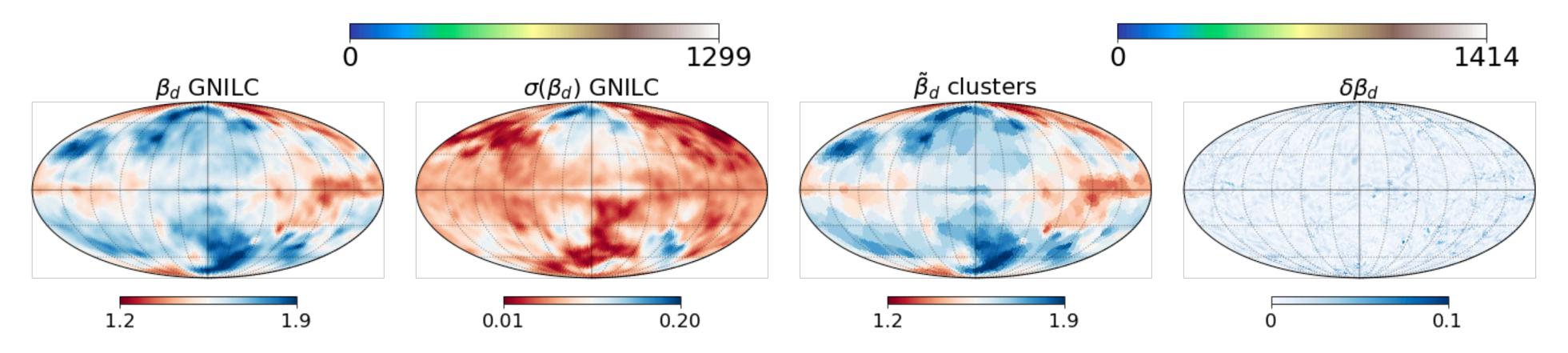


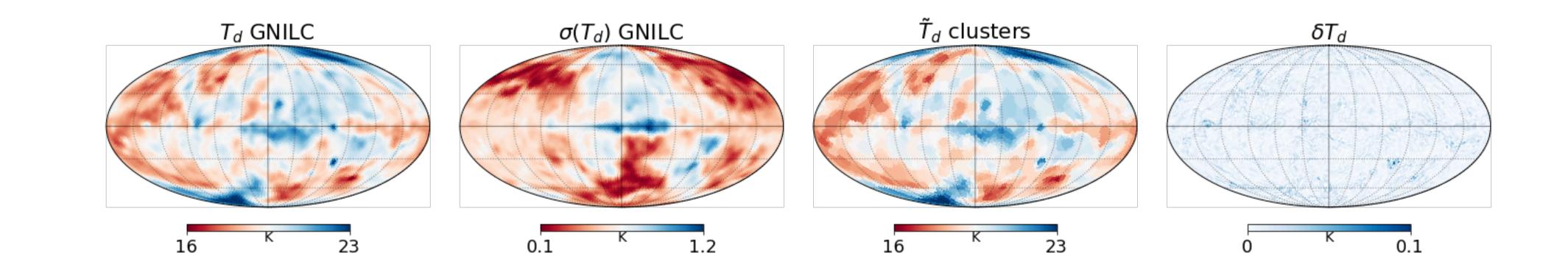
wrong clusters Litebird



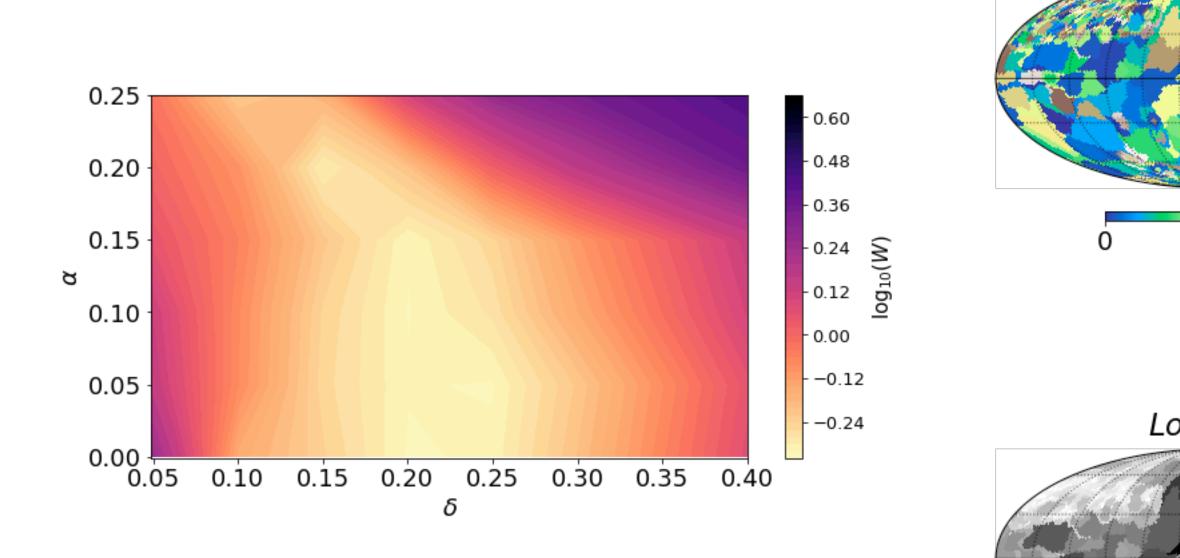








T_d GNILC



Ó

