

IMMM

Nicoletta SISSA Krachmalnicoff

From Planck to the future of CMB

Characterization of foreground emission for CMB experiments: current status and future prospective

Foreground overview

Foreground overview

Available data

- maps + ancillary data (HI, low frequency observations, ...)
- surprises in the analysis of the next generation of CMB experiments

• Characterization of foreground emission relies mostly on **Planck and WMAP full sky**

• Great datasets, but not enough to characterize FGs at the level needed to avoid

Available data

2deg

- maps + ancillary data (HI, low frequency observations, ...)
- surprises in the analysis of the next generation of CMB experiments

• Characterization of foreground emission relies mostly on **Planck and WMAP full sky**

• Great datasets, but not enough to characterize FGs at the level needed to avoid

Power spectra of thermal dust emission

- to sub-degree scales
- Positive TE correlation + E/B asymmetry: possibly due to alignment of dust filaments with Galactic magnetic field

Planck 2018 results XI, Planck Intermediate results XXX 2015

• Planck HFI 353GHz data allows to measure power spectra on large portions of the sky, up

Power spectra of thermal dust emission

 $D_{\ell} \ [\mu \mathrm{K}_{\mathrm{CMB}}]^2$

Planck 2018 results XI

- Robust detection of **positive TB correlation** with $r^{TB} = - \sim 0.05$ $C_{\ell}^{TT} \times C_{\ell}^{BB}$
- C_{ℓ}^{EB} consistent with zero

- Clark et al. 2021 Under this hypothesis it is possible to predict the amplitude of EB correlation:

$$< D_{\ell}^{EB} > \lesssim 2.5 \,\mu K_{CMB}^2$$

Implications for Cosmic birefringence?

Thermal dust SED

BB, $f_{sky}=0.62$, ell:4-11

Thermal dust SED: spatial variation

• Spatial variation of dust spectral parameters still uncertain

 β_d commander

0.2

-0.2

Planck intermediate results XLVIII, 2016

Synchrotron from WMAP and Planck

- (constraints up to $\ell \sim 200$ on large portions of the sky)
- Large E-to-B asymmetry with $A^{BB}/A^{EE} \leq 0.25$
- No detection of EB correlation

• Synchrotron power spectra show steeper decay in ℓ wrt thermal dust

Synchrotron SED

-3.2

-3

-3.4

 Planck x WMAP data allow to constrain synchrotron spectral index from power spectra, resulting in

 $\beta_s = -3.13 \pm 0.13$ at intermediate and high Galactic latitudes

Signal-to-noise level too low to properly measure spatial variation

BeyondPlanck XV, 2022

Synchrotron with low frequency data

- Analysis in harmonic space with WMAP+Planck-LFI: $\beta_s = -3.22 \pm 0.08$

• S-PASS survey @ 2.3GHz, 9 arcmin angular resolution, 50% sky coverage (Carretti et al. 2019)

Krachmalnicoff et al. 2018

Synchrotron with low frequency data

- Power law fit in range **2.3 33 GHz**
- Fit in each pixel in total polarized intensity taking into account the noise bias
- Angular resolution of 2°
- Sky coverage ~ 30%
- Flat prior

Synchrotron SED with low frequency data

Weiland et al. 2022

Foregrounds at small scales

- From available data we only have information of large scale polarized foregrounds (> 1deg)
- What's the behavior at small scales? $(C_{\rho}^{\text{dust},\text{TT}} \propto \ell^{-2.6} \text{ vs } C_{\rho}^{\text{dust},\text{P}} \propto \ell^{-2.4})$

• Impact on lensing, de-lensing, component separation?

5000

Conclusions

- Analysis of data over the past years has allowed a deeper CMB
- This has triggered great development of component separation algorithms
- models and keep testing component separation!
- Many questions are still open: e.g. SED spatial variation? scales?
- on C-BASS and Quijote)

understanding of foreground properties and their contamination to

• Are we safe? **Probably NO!** We need to keep working on our FG

Frequency de-correlation? TB, EB? synchrotron curvature? small

• New low frequency observations will be crucial (see talks/posters)

FG contamination to CMB spectral distortions

Ab	itbol	et al	. 2017
		-+ -+	
		- <u> </u> - 	
		-+	
		-¦	
		_ +	
<u> </u> \ \ \			

FG contamination to B-modes from Planck x WMAP

- Foreground contamination at $\ell = 80$ in 352 circular patches (fsky ~ 1%) at intermediate and high Galactic latitudes
- Dust from Planck-HFI 353 GHz
- Synchrotron from WMAP-K x Planck-LFI 30GHz

Krachmalnicoff et

	004	
al.	201	6

Thermal dust SED: spatial variation

• Spatial variation of dust spectral parameters still uncertain

Planck intermediate results XLVIII, 2016

Thermal dust SED: frequency de-correlation

- Spatial variation of spectral parameter can lead to frequency de-correlation
- No detection so far, given the noise level on Planck maps

$$\mathcal{R}_{\ell}^{BB} \equiv \frac{C_{\ell}^{BB}(217 \times 353)}{\sqrt{C_{\ell}^{BB}(353 \times 353) C_{\ell}^{BB}(217 \times 217)}}$$

Planck 2018 results XI

Synchrotron with low frequency data

Krachmalnicoff et al. 2018

