A new method for constraining cosmic birefringence

in the presence of foregrounds and instrumental effects in the Simons

Observatory

Baptiste Jost (APC, CPB) Radek Stompor (CPB), Josquin Errard (APC)

From Planck to the Future of CMB May 24th, 2022

Cosmic birefringence

- Standard cosmology conserves parity \Rightarrow EB=0
- Birefringence generates non-zero EB
- Generally: parity violating interactions such as Chern-Simons effect
- Could be a hint of photon/axion interaction

Credit: Minami / Keck

The Simons Observatory Small aperture telescopes (SAT)

- 3 Small Aperture Telescopes (SAT) :
 - large angular scale
 - main scientific goal : large scales BB
 - 42 cm aperture
 - 6 frequency bands (30 280 GHz)
 - 30,000 dichroic TES
 - 10% of the sky observed splitted in 2 patches

Baseline white noise, optimistic 1/f from Ade et al 2018:

Frequency channel [GHz]	27	39	93	145	225	280
sensitivity [μ K-arcmin]	21	13	3.4	4.3	8.6	22
ℓ_{knee}	15	15	25	25	35	40
FWHM [arcmin]	91	63	30	17	11	9

Source : Josquin Errard

The effects of foregrounds and systematics on r and β_{h} Uncorrected polarisation misalignment and $r = 0.1399^{+0.0063}_{-0.0070}$ no foreground removal 10^{2} Synchrotron Dust CMB 10¹ SO SAT bands $\beta_b(^{\circ}) = -0.272 \pm 0.056$ 10^{0} 0.2 0.0 $\beta_b(^{\circ})$ 10^{-1} -0.210-2 -0.410² 10¹ v [GHz] 10^{-3} 10^{-2} 10^{-1} Source: Ade et al 2018 -0.30.0 Ensemble average over noise and **CMB** realisation 5 $\beta_b(^\circ)$

The effects of foregrounds and systematics on r and β_{h}

The effects of foregrounds and systematics on r and β_{h}

The effects of foregrounds and systematics on r and β_{h}

The polarisation angle of the telescope problem

- Miscalibration of the polarisation angle of the telescope degenerate with birefringence angle
- Self calibration (Keating et al 2012) destroys isotropic birefringence signal
- Lift the degeneracy : Minami, Komatsu 2020 uses foregrounds
- Vanishing EB correlations are assumed to fit for miscalibration
- Hint of non-zero birefringence angle β=0.35 ± 0.14° from Planck data (Minami, Komatsu 2020, Diego-Palazuelos et al 2022)

• Clark et al 2021: non-zero foregrounds EB

Foreground cleaning and instrumental effects

- We investigate a method which is agnostic wrt foregrounds EB and uses calibration priors to lift degeneracy in the component separation step.
 - Tau A measurements $\sigma(\alpha) \approx 0.27^{\circ}$ (Aumont et al 2020)
 - Wire grid on top of the window $\sigma(\alpha) \approx 1^{\circ}$ (Bryan et al 2018)
 - Drone 0.01°≤ $\sigma(\alpha)$ ≤ 0.1°(Nati et al 2017, Gabriele Coppi's talk this morning)
- Frequency dependence of signals
 - Propagation of prior informations

Source: Nasa/Hubble

Wire grid

Source: Nati 2017

A new data model for generalised parametric component separation

Miscalibration matrix

Mixing matrix

Birefringence matrix

Prior on spectral likelihood

We add calibration priors to the spectral likelihood from Stompor et al 2016 averaged of CMB and noise realisations to lift degeneracies :

- Sparse wire grid : 1 deg precision requirement (Bryan et al 2018)
- Drone : $0.01^{\circ} \lesssim \sigma(\alpha) \lesssim 0.1^{\circ}$ precision (Nati et al 2017)

Pipeline summary : 2 steps analysis

Jost et al (2022) in prep

Spectral likelihood Gaussian priors precision : 0.1 deg

Spectral likelihood Gaussian priors precision : 0.1 deg

Forecast case study : SO SAT 0.1 deg prior on 93 GHz

 $\begin{array}{l} \text{Step 1: Sampling the} \\ \text{ensemble averaged} \\ \text{Spectral likelihood} \\ X\{\alpha\}.A\{\beta_{fg}\} \end{array}$

- True sky model : d0s0 pysm model Zonca et al 2021
- Baseline white noise,
- Taking advantage of the foregrounds to constrain miscalibration angles : only one prior needed
- Only one prior needed but adding more is better and more robust

Forecast case study : SO SAT 0.1 deg prior on all channels

 $\begin{array}{l} Step \ 1: Sampling \ the \\ ensemble \ averaged \\ Spectral \ likelihood \\ X\{\alpha\}.A\{\beta_{fg}\} \end{array}$

- True sky model : d0s0 pysm model Zonca et al 2021
- Baseline white noise,
- Taking advantage of the foregrounds to constrain miscalibration angles : only one prior needed

Results : SO SAT 0.1 deg prior on all channels

Step 2 : Sampling the ensemble averaged Cosmological likelihood

- True sky model : d0s0 pysm model Zonca et al 2021
- input parameters :
 - **r = 0.0**
 - β_b = 0.0°

Baseline white noise, optimistic 1/f

from Ade et al 2018:

Frequency channel [GHz]	27	39	93	145	225	280
sensitivity [μ K-arcmin]	21	13	3.4	4.3	8.6	22
ℓ_{knee}	15	15	25	25	35	40
FWHM [arcmin]	91	63	30	17	11	9

Results : SO SAT 0.1 deg prior on all channels

Step 2 : Sampling the ensemble averaged Cosmological likelihood

- input parameters :
 - **r = 0.01**
 - β_b = 0.35° (Minami & Komatsu 2020)
- ~ 5 sigma

Noise and beam specifications from Ade et al 2018:

Frequency channel [GHz]	27	39	93	145	225	280
sensitivity [μ K-arcmin]	21	13	3.4	4.3	8.6	22
ℓ_{knee}	15	15	25	25	35	40
FWHM [arcmin]	91	63	30	17	11	9

Results : SO SAT 0.1 deg prior on all channels

Step 2 : Sampling the ensemble averaged Cosmological likelihood

- True sky model : **d7s3** pysm model Zonca et al 2021
- input parameters :
 - **r = 0.0**
 - \circ $\beta_{b} = 0.0^{\circ}$

Baseline white noise, optimistic 1/f from Ade et al 2018:

Frequency channel [GHz]	27	39	93	145	225	280
sensitivity [μ K-arcmin]	21	13	3.4	4.3	8.6	22
ℓ_{knee}	15	15	25	25	35	40
FWHM [arcmin]	91	63	30	17	11	9

Results : Evolution of precision wrt prior precision

We are able to set requirements for future calibration missions

- True sky model : d0s0
 pysm model Zonca et al
 2021
- Averaged over noise and CMB realisation
- input parameters :

$$\circ$$
 $\beta_{\rm b} = 0.0^{\circ}$

Results : Evolution of precision wrt prior precision

We are able to set requirements for future calibration missions

- True sky model : d0s0 pysm model Zonca et al 2021
- Averaged over noise and CMB realisation
- input parameters :

$$\circ$$
 $\beta_{\rm b} = 0.0^{\circ}$

Results : Evolution of precision wrt prior precision

We are able to set requirements for future calibration missions

- True sky model : d0s0 pysm model Zonca et al 2021
- Averaged over noise and CMB realisation
- input parameters :

$$\circ$$
 $\beta_{\rm b} = 0.0^{\circ}$

 $X(\{\alpha_1,...,\alpha_n\}) = \begin{pmatrix} \cos(2\alpha_1) & \sin(\beta_{cos}(2\alpha_1)) & \cos(\beta_{cos}(2\alpha_1)) & \cos(2\alpha_n) \\ 0 & \beta_{2\alpha_n} & \sin(2\alpha_n) \\ 0 & \beta_{2\alpha_n} & \cos(2\alpha_n) \end{pmatrix} \quad \text{à la Vergès et al 2020}$ $d_p = X(\{\alpha_1,...,\alpha_n\}).A_p(\{\beta_{fg}\}).B(\{\beta_b\}).s_p + n_p$

 $X(\{\alpha_{1},...,\alpha_{n}\}) = \begin{pmatrix} \cos(2\alpha_{1}) & \sin(\beta_{a,n} - \sin(2\alpha_{1})) & \cos(\beta_{a,n} - \sin(2\alpha_{n})) \\ 0 & \beta_{2\alpha_{n}} & \sin(2\alpha_{n}) \\ 0 & \beta_{2\alpha_{n}} & \cos(2\alpha_{n}) \end{pmatrix}$ Systematic matrix $d_{p} = X(\{\alpha_{1},...,\alpha_{n}\}).A_{p}(\{\beta_{fg}\}).B(\{\beta_{b}\}).s_{p} + n_{p}$

 $X(\{\alpha_{1},...,\alpha_{n}\}) = \begin{pmatrix} \cos(2\alpha_{1}) & i & 0 \\ -\sin(2\alpha_{1}) & \text{Polarisation efficiency} \\ 0 & 2\alpha_{n} & \sin(2\alpha_{n}) \\ 2\alpha_{n} & \cos(2\alpha_{n}) \end{pmatrix} \\ \uparrow \text{ Systematic matrix} \\ d_{p} = X(\{\alpha_{1},...,\alpha_{n}\}).A_{p}(\{\beta_{fg}\}).B(\{\beta_{b}\}).s_{p} + n_{p}) \\ \downarrow S_{p} = N(\{\alpha_{1},...,\alpha_{n}\}).A_{p}(\{\beta_{fg}\}).B(\{\beta_{b}\}).s_{p} + n_{p}) \\ \downarrow S_{p} = N(\{\beta_{1},...,\beta_{n}\}).A_{p}(\{\beta_{fg}\}).B(\{\beta_{b}\}).s_{p} + n_{p}) \\ \downarrow S_{p} = N(\{\beta_{1},...,\beta_{n}\}).A_{p}(\{\beta_{1},...,\beta_{n}\}).A_{p$

 $X(\{\alpha_1,...,\alpha_n\}) = \begin{pmatrix} \cos(2\alpha_1) & \text{Polonian} & 0 \\ -\sin(2\alpha_1) & \text{Polonian} & \alpha_n & \sin(2\alpha_n) \\ 0 & \text{Polonian} & \cos(2\alpha_n) \end{pmatrix}$ And many more ... $0 & \text{Polonian} & \cos(2\alpha_n) \end{pmatrix}$ Systematic matrix $d_p = X(\{\alpha_1,...,\alpha_n\}).A_p(\{\beta_{fg}\}).B(\{\beta_b\}).s_p + n_p$

Conclusion :

• I developed a new method based on parametric component separation that

estimates the impact of foregrounds and systematic on the precision of r and β_{t} in multi-frequency CMB experiments assuming for now the simplest (constant over the sky) parametrisation of foreground parameters.

General and versatile framework :

other systematic such as HWP

other experiments CMB-S4 / LiteBIRD

Source : Deborah Kellner

Parametric component separation

Example : The polarisation angle of the telescope, new data model

$$X(\{\alpha_{1},...,\alpha_{n}\}) = \begin{pmatrix} \cos(2\alpha_{1}) & \sin(2\alpha_{1}) & 0 \\ -\sin(2\alpha_{1}) & \cos(2\alpha_{1}) & \\ & \ddots & \\ & & \cos(2\alpha_{n}) & \sin(2\alpha_{n}) \\ 0 & & -\sin(2\alpha_{n}) & \cos(2\alpha_{n}) \end{pmatrix}$$

$$Miscalibration matrix$$

$$d_{p} = X(\{\alpha_{1},...,\alpha_{n}\}).A_{p}(\{\beta_{fg}\}).B(\{\beta_{b}\}).s_{p} + n_{p}$$

$$B(\{\beta_{b}\}) = \begin{pmatrix} \cos(2\beta_{b}) & \sin(2\beta_{b}) & 0 & 0 & 0 & 0 \\ -\sin(2\beta_{b}) & \cos(2\beta_{b}) & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
Birefindence matrix

Spectral likelihood Gaussian priors precision : 0.1 deg

Spectral likelihood Gaussian priors precision : 0.1 deg

