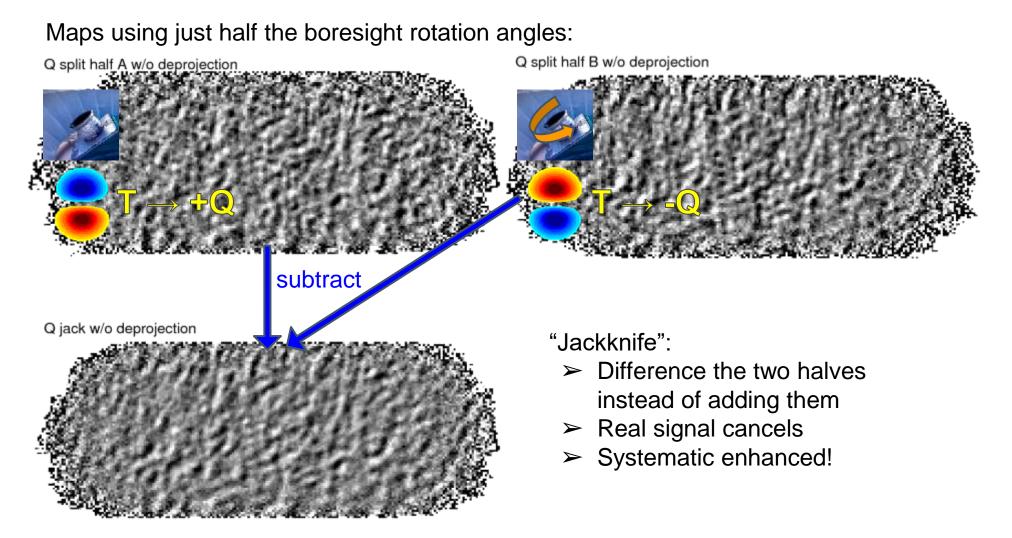
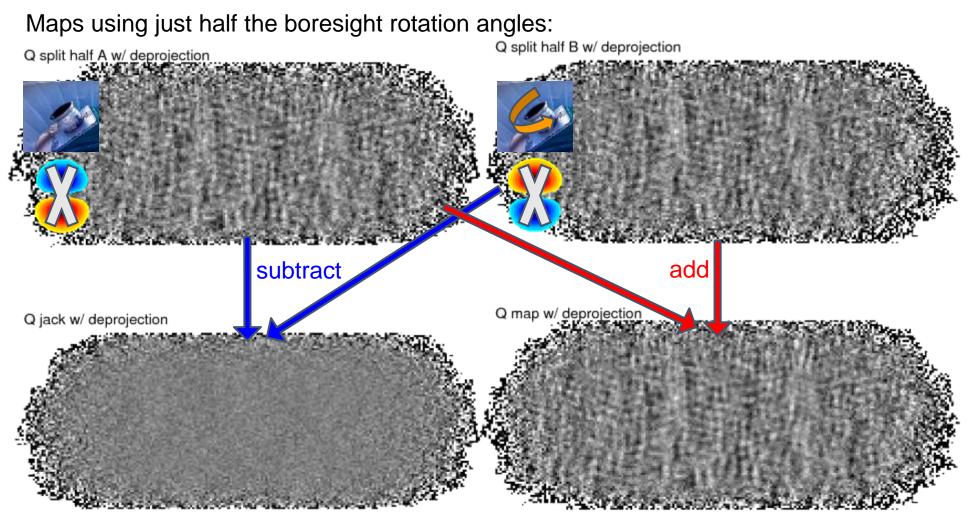

Cosmological constraints and instrumental systematics studies using line-of-sight distortion fields with BICEP/Keck and beyond

Dominic Beck

with Eric Yang & the BICEP/Keck collaboration

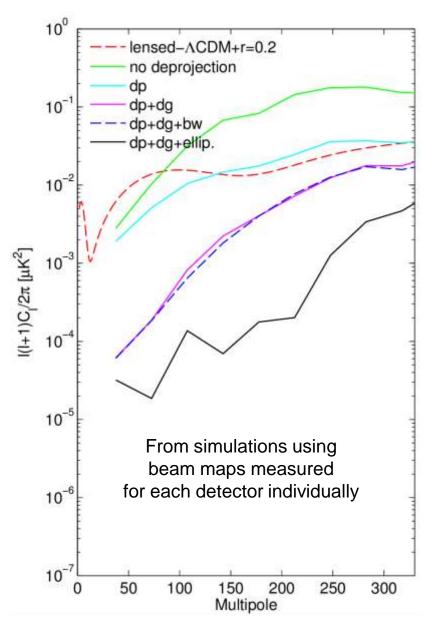


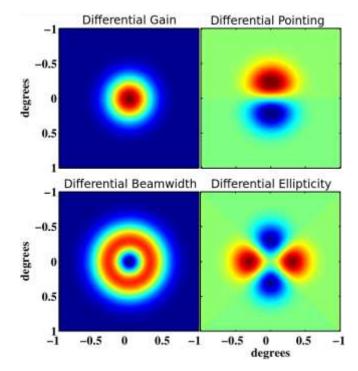
Raw Data



- Cover the whole field in 60 such scans then start over at new boresight rotation
- Scanning modulated the CMB signal to freqs < 4 Hz</p>

Jackknife: Sensitive Test of Systematics


Systematics Removal: Deprojection


"Deprojection": ➤ From well-known temperature > sky form a prediction of the leakage and remove it

 Cleans up maps even without cancellation from boresight rotation

Systematics Removal: Deprojection

Technique developed to remove all types of leakage induced by differences of detector pair beam shapes

Use the Planck 143 GHz map to form template of the leakage

Deproject diff gain and pointing (& subtract diff ellipticity)

Table 11. Jackknife PTE values from χ and χ^2 tests.

Systematics beyond Beam imperfections

Other systematic effects investigated and simulated [BICEP/Keck III 2015]

> Table of jackknife tests and corresponding PTE values [BICEP/Keck XV 2021]

	2016		2017		2018	
	x	χ^2	x	x ²	x	χ^2
Band Power	1-5/1-9					
Deck jackkni	fe					
EE	0.501/0.383	0.754/0.719	0.982/0.992	0.050/0.108	0.022/0.172	0.122/0.092
BB	0.936/0.998	0.443/0.226	0.731/0.419	0.848/0.563	0.567/0.924	0.130/0.152
EB	0.319/0.283	0.840/0.866	0.263/0.589	0.932/0.838	0.265/0.307	0.832/0.868
Scan dir jacki	knife		2010-120-00 CON 12		1,00000000000	
EE	0.277/0.112	0.956/0.275	0.449/0.453	0.066/0.070	0.198/0.437	0.804/0.459
BB	0.764/0.872	0.525/0.196	0.283/0.433	0.162/0.407	0.168/0.172	0.012/0.030
EB	0.904/0.431	0.697/0.591	0.076/0.228	0.517/0.816	0.838/0.527	0.806/0.798
Temporal spl	it jackknife		2.922-0073		0.00000	
EE	0.998/0.996	0.084/0.257	0.028/0.068	0.277/0.295	0.146/0.467	0.395/0.152
BB	0.098/0.200	0.261/0.255	0.263/0.531	0.331/0.317	0.826/0.946	0.822/0.719
EB	0.958/0.772	0.461/0.713	0.956/0.936	0.020/0.044	0.070/0.034	0,497/0,499
Tile jackknife	é .					
EE	0.257/0.150	0.429/0.623	0.403/0.529	0.559/0.248	0.002/0.004	0.004/0.018
BB	0.527/0.713	0.323/0.495	0.952/0.852	0.455/0.816	0.697/0.862	0.705/0.371
EB	0.707/0.493	0.776/0.872	0.381/0.633	0.517/0.311	0.946/0.984	0.146/0.257
Azimuth jack	knife		10123033034			
EE	0.575/0.866	0.140/0.259	0.776/0.727	0.916/0.962	0.834/0.545	0.695/0.687
BB	0.014/0.126	0.082/0.068	0,178/0.425	0.435/0.667	0.487/0.279	0.860/0.665
EB	0.357/0.415	0.846/0.212	0.487/0.068	0.904/0.363	0.876/0.998	0.164/0.040
Mux col jack	knife		1.04231007808			
EE	0.309/0.429	0.335/0.363	0.731/0.745	0.232/0.625	0.681/0.946	0.894/0.778
BB	0.665/0.182	0.960/0.423	0.116/0.070	0.840/0.950	0.210/0.657	0.573/0.108
EB	0.451/0.681	0.944/0.992	0.335/0.339	0.423/0.415	0.248/0.353	0.988/0.924
Alt deck jack	knife		10-000000 mm 18			
EE	0.982/0.996	0.220/0.166	0.972/0.954	0.172/0.405	0.056/0.182	0.102/0.214
BB	0.062/0.635	0.307/0.170	0.251/0.236	0.050/0.100	0.054/0.467	0.152/0.043
EB	0.198/0.192	0.477/0.790	0.411/0.731	0.238/0.118	0.667/0.429	0.513/0.814
Mux row jack	kknife					
EE.	0.776/0.796	0.144/0.068	0.914/0.824	0.345/0.447	0.741/0.359	0.707/0.719
BB	0.822/0.725	0.539/0.631	0.425/0.631	0.561/0.800	0.515/0.673	0.890/0.583
EB	0.850/0.471	0.060/0.166	0.677/0.573	0.383/0.677	0.367/0.601	0.870/0.844
Tile and dock	jackknife					
EE	0.631/0.421	0.788/0.878	0.439/0.427	0.888/0.920	0.886/0.926	0.715/0.900
BB	0.902/0.904	0.531/0.477	0.601/0.786	0.441/0.407	0.411/0.567	0.349/0.695
EB	0.311/0.461	0.429/0.569	0.842/0.709	0.204/0.377	0.896/0.944	0.733/0.485
Focal plane in	nner or outer ja	ckknife				
EE	0.355/0.635	0.822/0.311	0.204/0.224	0.579/0.633	0.174/0.120	0.208/0.327
BB	0.800/0.922	0.711/0.555	0.663/0.928	0.617/0.295	0.148/0.194	0.204/0.283
EB	0.483/0.760	0.303/0.373	0.836/0.974	0.711/0.549	0.132/0.130	0.880/0.635
Tile top or be	otom jackknife	e da foi sera sera de se	ender ihren der Abr		pendicita i	
EE	0.942/0.641	0.064/0.010	0.768/0.960	0.505/0.397	0.910/0.679	0.204/0.463
BB	0.974/0.764	0.124/0.012	0.224/0.703	0.046/0.090	0.226/0.705	0.774/0.503
EB	0.353/0.717	0.675/0.593	0.786/0.932	0.411/0.451	0.136/0.345	0.148/0.174
Tile inner or	outer jackknife					
EE	0.745/0.665	0.397/0.798	0.828/0.870	0.756/0.930	0.002/0.012	0.014/0.124
BB	0.337/0.667	0.224/0.421	0.196/0.667	0.956/0.818	0.810/0.924	0.076/0.138
EB	0.820/0.900	0.840/0.922	0.216/0.405	0.583/0.756	0.321/0.545	0.321/0.635
Moon jackkn	ife		NAME OF COMPANY		to act carro priv	
EE	0.218/0.709	0.485/0.487	0.860/0.882	0.780/0.878	0.904/0.683	0.104/0.166
BB	0.976/0.824	0.255/0.607	0.996/0.946	0.108/0.246	0.206/0.164	0.142/0.385
EB	0.487/0.900	0.778/0.693	0.088/0.128	0.583/0.463	0.840/0.912	0.701/0.064
A and B offs	et best and wor	st jackknife				
EE	0.860/0.794	0.723/0.924	0.571/0.661	0.315/0.537	0.860/0.625	0.908/0.565
BB	0.453/0.561	0.022/0.044	0.970/0.972	0.194/0.293	0.860/0.942	0.814/0.780
EB	0.435/0.455	0.259/0.549	0.806/0.760	0.421/0.285	0.806/0.623	0.776/0.551

6

New layer of instrumental systematic control: Are our maps statistically isotropic?

Basis of 11 map-level distortion fields:

$$\delta[Q \pm iU](\vec{n}) = \{ \tau(\vec{n}) \pm 2i\omega(\vec{n}) \} [\tilde{Q} \pm i\tilde{U}](\vec{n}) \\ + [f_1(\vec{n}) \pm if_2(\vec{n})] [\tilde{Q} \mp i\tilde{U}](\vec{n}) \\ + [\gamma_1(\vec{n}) \pm i\gamma_2(\vec{n})] T(\vec{n}) \\ + \vec{p}(\vec{n}) \cdot \nabla[\tilde{Q} \pm i\tilde{U}](\vec{n}) \\ + [d_1(\vec{n}) \pm id_2(\vec{n})] [\partial_1 \pm i\partial_2] T(\vec{n}) \\ + q(\vec{n})[\partial_1 \pm i\partial_2]^2 T(\vec{n})$$

[Hu et al. 2003]

Basis of 11 map-level distortion fields

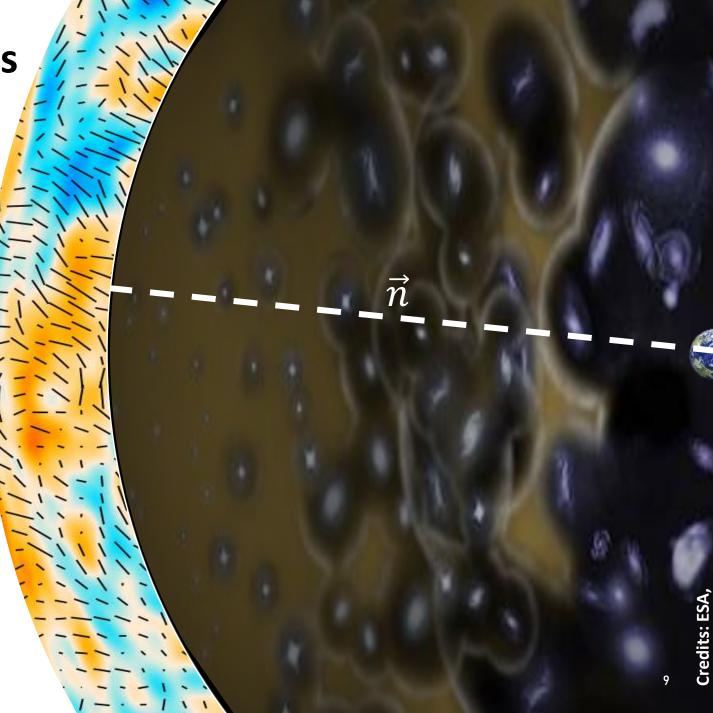
field	instrumental systematics			
τ	detector gain miscalibration			
ω	detector polarization angle miscalibration			
p_1, p_2	detector beam center miscalibration			
γ_1, γ_2	A/B detector gain mismatch			
d_1, d_2	A/B detector differential pointing			
q	A/B detector differential beamwidth			
f_1, f_2	gain miscalibration coupled with deck angle rotation			

Different detectors have different coverage on the final map which can create a spatially varying distortion effect.

Cosmological map distortions

Patchy reionization

$$\Delta Q \pm iU = \tau (Q \pm iU)$$

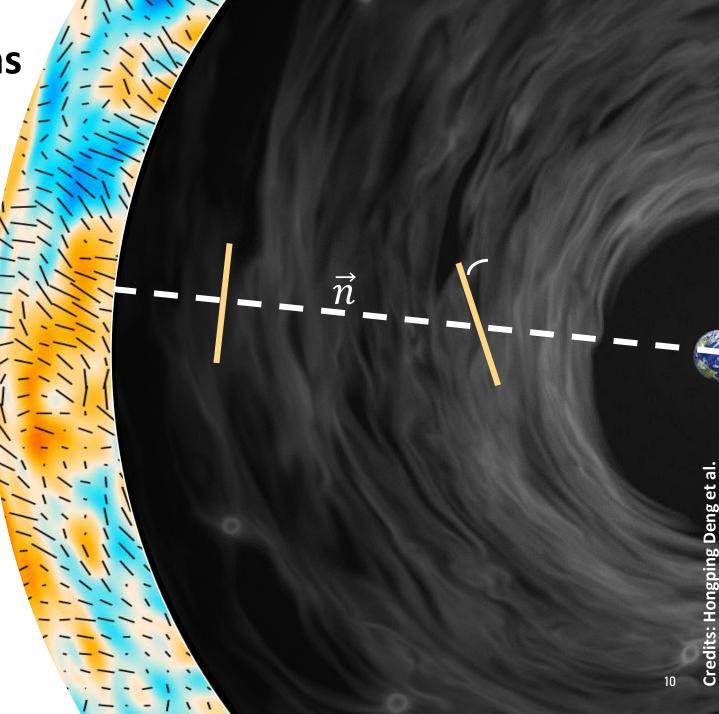

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$Crinkly-surface model
[Glusevic et al. 2013]$$

$$C_L^{\tau\tau} = \left(\frac{A^{\tau}}{10^4}\right) \frac{4\pi}{L_c^2} e^{-L^2/L_c^2}$$

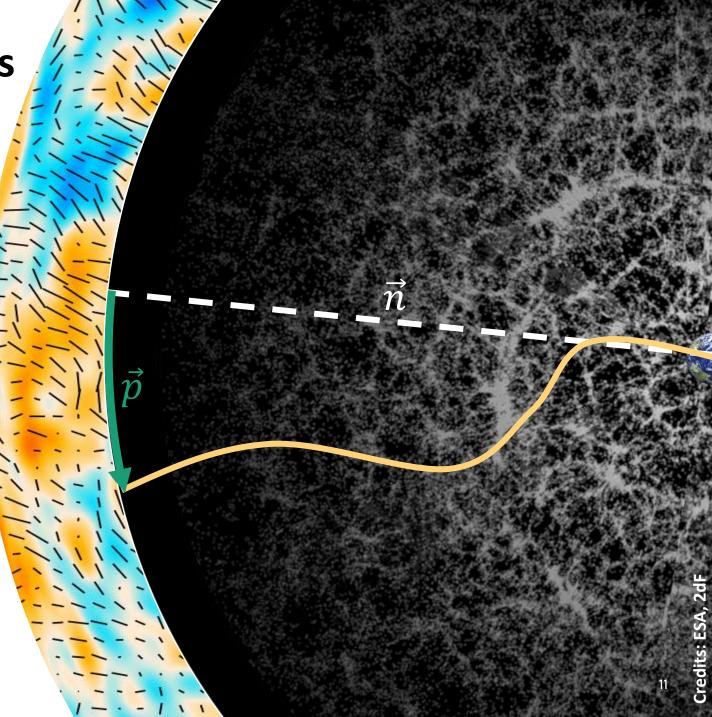


Cosmological map distortions

Anisotropic cosmic birefringence

 $\Delta Q \pm iU = \pm 2i\omega \ (Q \pm iU)$

- photon-axion coupling, $g_{a\gamma}$ [Carroll et al. 1990]
- primordial magnetic fields [Yadav et al. 2012]

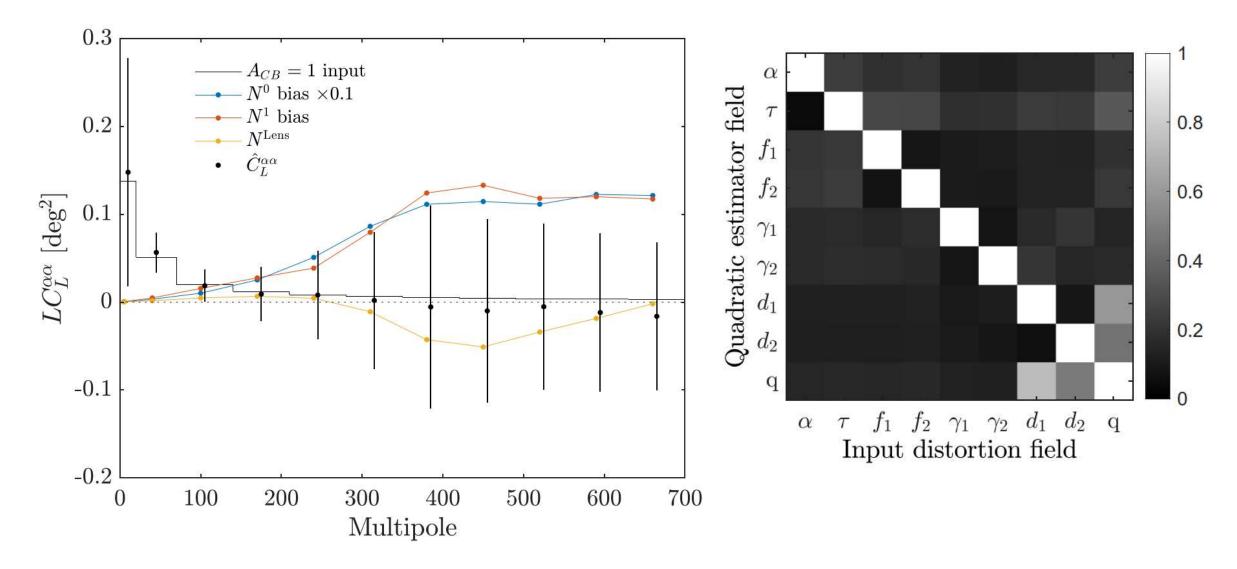

Cosmological map distortions

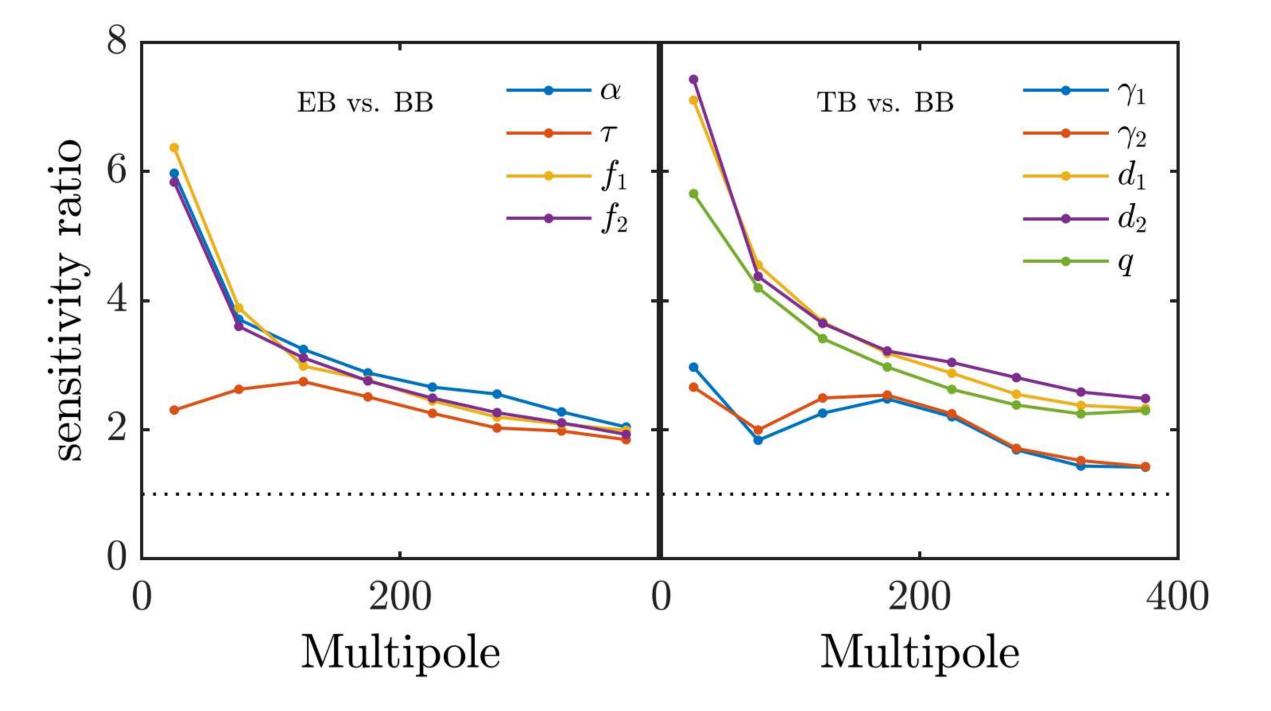
CMB lensing

$$\Delta Q \pm iU = \vec{p} \cdot \nabla (Q \pm iU)$$

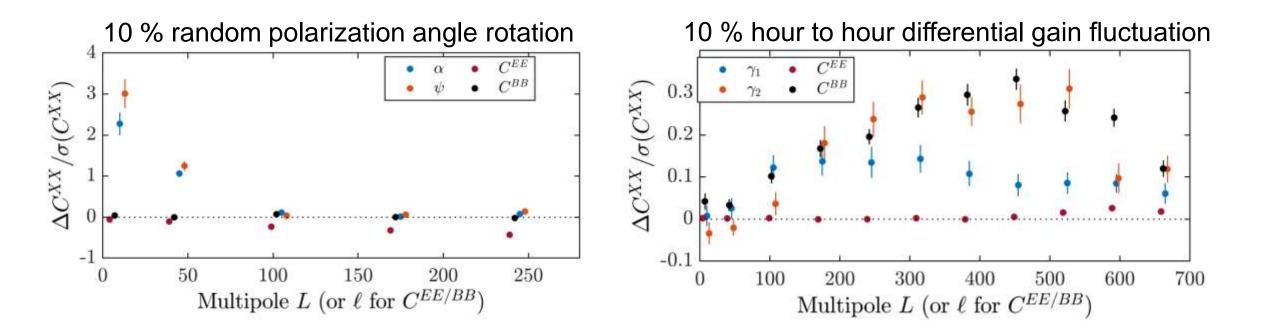
gradient lensing deflection

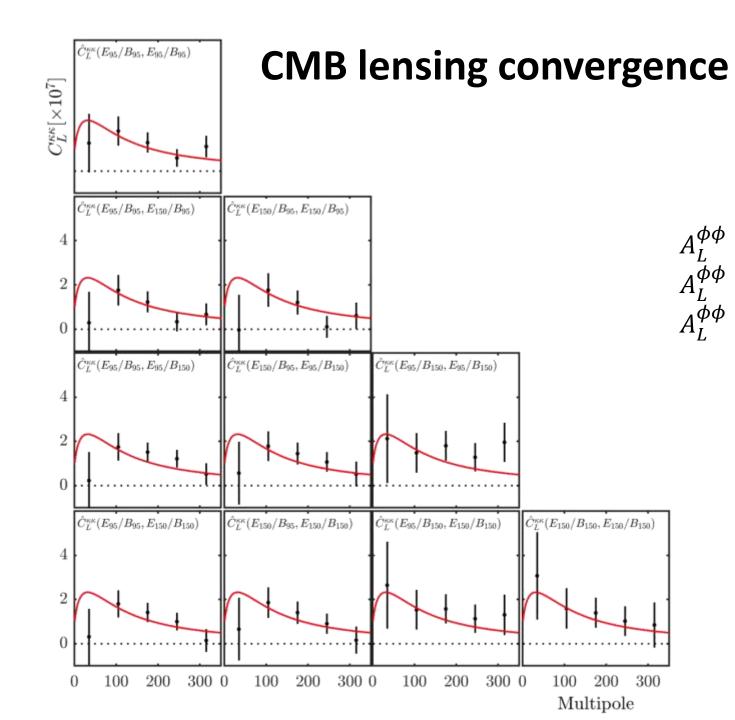
$$\vec{p}(\vec{n}) = -2 \int d\chi \frac{\chi_* - \chi}{\chi \chi_*} \nabla \Psi$$


Reconstruction of Distortion Fields

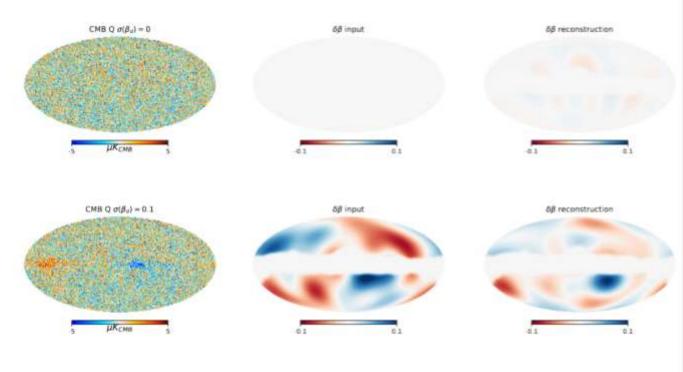

-

The quadratic estimator


$$\bar{D}_{L}^{XB} = A_{L}^{D,XB} \int \frac{d^{2}l_{1}}{(2\pi)^{2}} X_{l_{1}} B_{l_{2}} \frac{f_{l_{1},l_{2}}^{D,XB}}{C_{l_{1}}^{XX} C_{l_{2}}^{BB}} \qquad \begin{array}{l} \text{filter function} \\ \text{specific to each} \\ \text{distortion field} \end{array}$$
normalization
$$\left\langle \left| \hat{D}_{L} \right|^{2} \right\rangle = \hat{C}_{L}^{DD} + \hat{N}_{L}^{DD} \\ \begin{array}{l} \text{bias terms: } N_{L}^{(0)}, N_{L}^{(1)}, N_{L}^{\text{lens}} \end{array}\right.$$

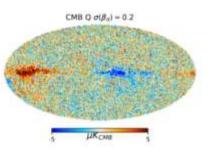

Reconstruction of Distortion Fields

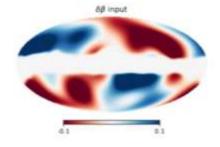
Systematic simulations

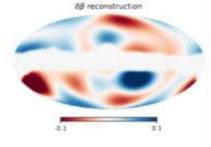


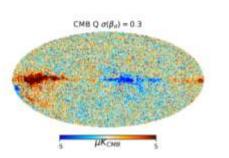
$$A_L^{\phi\phi} = 1.15 \pm 0.36$$
 (BK14 EBEB)
 $A_L^{\phi\phi} = ?.?? \pm 0.20$ (BK18 EBEB)
 $A_L^{\phi\phi} = 1.03 \pm 0.09$ (BK18 BB)

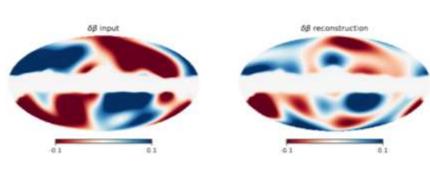
Beyond BICEP/Keck


Measure the "distortion" caused by a varying dust SED in a componentseparated CMB map






F. Bianchini


K. Wu

Conclusions

- We use TB and EB quadratic estimators to reconstruct spatially varying distortion fields in BK 95 GHz and 150 GHz maps
- Distortion fields can be used for instrumental systematics identification and perform measurements of patchy reionization, anisotropic cosmic birefringence or lensing
- Distortion fields can be more sensitive to certain types of instrumental systematics than traditional EE and BB jackknifes and have been already a useful tool to identify spurious instrumental systematics in ongoing data analysis
- Could be potentially used for systematics mitigation in the future