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I) The epoch of reionisation

Credit: NAOJ

Thomas et al. 2009, MNRAS
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I) The epoch of reionisation

The transition from the neutral intergalactic medium 
(IGM, H + He) left after the universe recombined at 

z~1100 to the fully ionized IGM observed today
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I) The epoch of reionisation

First evidence from distant quasars (Gunn & Peterson 1965)

Credit: J.H. Wise
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I) The epoch of reionisation

z =
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I) The epoch of reionisation

Decades later, still many open questions:

● WHEN: When did it happen? How long did it last?

● WHO: What were the sources responsible?

● HOW: How did it proceed? Was it gradual or sudden? 

What was its topology? Was it homogeneous or patchy?



24

II) Reionisation & the CMB



25

II) Reionisation & the CMB



26

II) Reionisation & the CMB



27

II) Reionisation & the CMB



28

II) Reionisation & the CMB



29

II) Reionisation & the CMB

Earlier and/or longer reionisation →  τ++
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II) Reionisation & the CMB

Impact on CMB angular power spectra:

Rescaling As by exp(-2τ)Adds power around scales
~ horizon at scattering time
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Phys. Rev. D. 2009
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II) Reionisation & the CMB

Impact on CMB:

● suppression of power at high multipoles 
(degeneracy with other cosmological parameters – and foregrounds)

● new anisotropies at large angular scale

(horizon has grown to a much larger size)
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II) Reionisation & the CMB

(Thermal) Sunyaev-Zel’dovich effect
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II) Reionisation & the CMB

Kinetic Sunyaev-Zel’dovich (kSZ) effect

Bulk
velocity

Bulk velocity of free 
electrons relative to the 

CMB introduces a Doppler 
shift to the scattered 

photons

Commonly divided into two components:
● homogeneous kSZ, sourced by density perturbations of the late, 

fully ionised Universe
● patchy kSZ, sourced by ionization perturbations during reionisation
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II) Reionisation & the CMB

Kinetic Sunyaev-Zel’dovich (kSZ) effect
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II) Reionisation & the CMB

Impact on CMB:

● suppression of power at high multipoles 
(degeneracy with other cosmological parameters – and foregrounds)

● new anisotropies at large angular scale

(horizon has grown to a much larger size)

● kinetic Sunyaev-Zel’dovich effect

(small scale re-scattering of photons off newly liberated electrons)
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III) How to model the EoR

Free electron density

ꭓe = ionization fraction as a 
function of the redshift?
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III) How to model the EoR

• symmetric (standard tanh)
- 1 or 2 parameter(s):

zre, Δz, z, τ (pick 2 at most) 

• asymmetric
- emulates 2 populations of sources :

1. “gentle” : stars & DGs
2. “abrupt” : QSOs finish

- phenomenological description :
zstart, zend, ztrans ↔  zre, Δz, zbegin, Δz, zend

• model-independent
- xe(z) in redshift bins
- Principal Component Analysis
- Piecewise Cubic Hermite 

Interpolating Polynomials (PCHIP) 
- FlexKnot (Milea & Bouchet 2018)
- ...

τ = 0.06

+ physical models: see Daniela Paoletti poster (combination with other astro data)
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III) How to model the EoR

Modelling the kSZ effect

● homogeneous kSZ → density perturbations → δb

→ need to know about small-scale matter           
   distribution

● patchy kSZ → ionization perturbations → δꭓ

→ depends on duration of reionisation and         
   distribution of ionised bubble sizes
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III) How to model the EoR

Modelling the kSZ effect

J. H. Wise

● volume-averaged analytic models

● spatially-dependent semi-numeric models

● radiative transfer calculations using matter distributions 

from N-body sims

● full radiation hydrodynamic galaxy formation simulations
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III) How to model the EoR

Modelling the kSZ effect

J. H. Wise

Best of both worlds ?

e.g. Gorce et al. 2022 (2202.08698):
machine learning algorithm

trained on predictions of the parametric model
of Gorce, Ilic, et al 2020

(itself calibrated on full hydro simulations)
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III) How to model the EoR

In CMB studies like Planck: templates with rescaling

● homogeneous kSZ

● patchy kSZ

[Battaglia et al.,  2013]

[Shaw et al.,  2012]
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IV) Current constraints on reionisation

Significant progress in the past two decades

Symmetric reionisation:
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IV) Current constraints on reionisation

0.67%

1.16%

0.03%

13.9%

0.53%

0.46%

But remains one of the most poorly known
aspects of our cosmological model

Symmetric reionisation:



64

IV) Current constraints on reionisation

Symmetric reionisation:

“Planck constraints on reionization history”
[Planck intermediate results. XLVII (2016)]

 𝛕 =0.058 ± 0.012 (         )± 0.009 (stat)
± 0.008 (sys)



65

IV) Current constraints on reionisation

Symmetric reionisation:
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IV) Current constraints on reionisation

Symmetric reionisation: Asymmetric reionisation:
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IV) Current constraints on reionisation

Asymmetric reionisation

Symmetric reionisation
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IV) Current constraints on reionisation

Model-independent approaches

PCA reconstruction

[Heinrich, Miranda & Hu PRD 95, 023513 (2017)]
[Heinrich & Hu, arXiv:1802.00791 (2018)]

[Hazra & Smoot, JCAP, 11, 028 (2017)]

Piecewise Cubic Hermite Interpolating 
Polynomials (PCHIP) 
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IV) Current constraints on reionisation

Model-independent approaches

[Hazra & Smoot, JCAP, 11, 028 (2017)]

Piecewise Cubic Hermite Interpolating 
Polynomials (PCHIP) 

Some care required concerning
non-explicit priors

PCA reconstruction

[Heinrich, Miranda & Hu PRD 95, 023513 (2017)]
[Heinrich & Hu, arXiv:1802.00791 (2018)]
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IV) Current constraints on reionisation

[Planck 2018 results. VI (2019)]
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IV) Current constraints on reionisation

Planck is not able to measure kSZ independently

→ need high resolution CMB data (ACT,0 SPT)

Current constraints from CMB on kSZ amplitude are very 
weak and model dependent

→ need high-sensitivity, small-scale measurements

Planck+ACT+SPT
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IV) Current constraints on reionisation

Gorce et al. 2022 (2202.08698)
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IV) Current constraints on reionisation

● CMB results consistent with a fully reionised Universe at z ∼ 6

● Good agreement with recent constraints from particular objects 

(QSOs, GRB, Ly )-𝜶)

● Disfavors large abundances of star-forming galaxies beyond z = 15

● Sufficient to comply with all the observational constraints without 

the need for high-redshift (z = 10 to 15) galaxies.

● CMB results on reionisation history is model dependent

● Need to be careful about “model-independent” approaches

● Emphasis on the need for complementary probes of reionisation 

(especially given the small tau value)
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V) Perspectives & future constraints



V) Upcoming CMB surveys

Future:
● Simons Observatory
● LiteBIRD
● CMB Stage-4
● Balloons
● ...
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V) Upcoming CMB surveys

+ improvements on analysis pipeline (foregrounds cleaning, etc.)

Credit: Taurus



V) Upcoming LSS surveys

DETF classification:
● Stage II: SDSS, KiDS, …
● Stage III: DES, …
● Stage IV: DESI, LSST, Euclid 

Fact sheet:
● Orbit around L2
● ~6 years of mission
● Launch date (!): Feb. 5th 2023
● Q1 after 17 months, DR1 at 29 
● VIS & NISP instruments
● ~15,000 sq. deg.
● Spectro + photo survey
● Gal. Clustering & Weak Lensing



V) CMB-LSS joint analysis



V) CMB-LSS joint analysis

kSZ x LSS cross-correlation

ACT x BOSS, Hand++ ‘12
ACT x BOSS, Schaan++ ‘15

ACT x redMaPPer, de Bernardis++ ‘16
SPT x DES, Soergel++ ‘16

Planck x SDSS, ‘15

~ 5 sigma, but expected to improve quickly with 
(deeper) CMB x galaxy overlap



V) Euclid CMBX forecasts paper
 Ilic et al. 2021, A&A, arXiv:2106.08346



V) Focus: Pessimistic Euclid+CMB from SO
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Improvement factors = σbefore / σafter
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V) Further observations

● QSO spectra

● Lyman-alpha forests

● IGM temperature measurements

● ...



V) Further observations

● QSO spectra

● Lyman-alpha forests

● IGM temperature measurements

● ...

● Neutral hydrogen (21cm) absorption/emission



The end

Thank you very much
for your attention !
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