Study of beam far side-lobes systematics and calibration for the LiteBIRD mission

Clément Leloup, on behalf of the LiteBIRD collaboration

I.General context

II.Beam far side-lobes systematic effects

III.Requirements for LiteBIRD

I.General context

II.Beam far side-lobes systematic effects

III.Requirements for LiteBIRD

LiteBIRD overview

- Lite (Light) satellite for the study of *B*-mode polarization and Inflation from cosmic background Radiation Detection
- JAXA's L-class mission selected in May 2019
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 22 bands) at 70–18 **arcmin** angular resolution for precision measurements of the **CMB** *B*-modes
- Final combined sensitivity: 2.2 µK•arcmin, after comp. sep.

LiteBIRD overview

- Lite (Light) satellite for the study of *B*-mode polarization and Inflation from cosmic background Radiation Detection
- JAXA's L-class mission selected in May 2019
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 22 bands) at 70–18 arcmin angular resolution for precision measurements of the **CMB** *B*-modes
- Final combined sensitivity: 2.2 µK•arcmin, after comp. sep.
- Definitive search for the *B*-mode signal from cosmic inflation in the CMB polarization
- Current best constraint: *r* < 0.032 (95% C.L.) (BICEP/Keck + Planck, see Tristram et al. 2021)
- LiteBIRD will improve current sensitivity on *r* by a factor ~50
- L1-requirements (no external data):
 - For r = 0, total uncertainty (fg+stat+syst) of $\delta r < 0.001$
 - For r = 0.01, 5- σ detection of the reionization $(2 < \ell < 10)$ and recombination $(11 < \ell < 200)$ peaks
- Most LB characteristics and expected results summarized in arXiv:2202.02773

May 23

Foreground cleaning

Foreground modeling

• **Synchrotron**: curved spectrum (AME is absorbed in the curvature)

$$[Q_{\rm s}, U_{\rm s}](\hat{n}, \nu) = [Q_{\rm s}, U_{\rm s}](\hat{n}, \nu_{\star}) \cdot \left(\frac{\nu}{\nu_{\star}}\right)^{\beta_{\rm s}(\hat{n}) + C_{\rm s}(\hat{n})\ln(\nu/\nu^{\rm c})}$$

• **Dust:** modified blackbody $[Q_{\rm d}, U_{\rm d}](\hat{n}, \nu) = [Q_{\rm d}, U_{\rm d}](\hat{n}, \nu_{\star}) \cdot \left(\frac{\nu}{\nu_{\star}}\right)^{\beta_{\rm d}(\hat{n}) - 2} \frac{B_{\nu} \left(T_{\rm d}(\hat{n})\right)}{B_{\nu_{\star}} \left(T_{\rm d}(\hat{n})\right)}$

8 parameters in each sky patch

• "**Multipatch** technique" (extension of xForecast), to account for spatial variability

Impact of foregrounds residual

Control of systematics

Systematic error formalism

- Systematic errors originate from combination of:
 - 1. Imperfect knowledge of foregrounds
 - 2. Miscorrection of instrumental or environmental effects

• Bias defined as the maximum of the cosmological likelihood, assuming r_{true}=0

$$\ln \mathcal{L}(r) = -f_{sky} \sum_{\ell} \frac{2\ell + 1}{2} \left[\frac{\hat{C}_{\ell}}{C_{\ell}} + \ln C_{\ell} \right]$$
$$\hat{C}_{\ell} = C_{\ell}^{sys} + C_{\ell}^{lens} + N_{\ell}$$
$$C_{\ell} = rC_{\ell}^{tens} + C_{\ell}^{lens} + N_{\ell}$$

Category	Systematic effect	Type
Beam	Far sidelobes	R
	Near sidelobes	R
	Main lobe	E
	Ghost	R
	Polarization and shape in band	R
Cosmic ray	Cosmic-ray glitches	E
HWP	Instrumental polarization	E
	Transparency in band	R
	Polarization efficiency in band	R
	Polarization angle in band	R
Gain	Relative gain in time	R
	Relative gain in detectors	R
	Absolute gain	E
Polarization	Absolute angle	E
angle	Relative angle	E
	HWP position	E
	Time variation	E
Pol. efficiency	Efficiency	E
Pointing	Offset	R
	Time variation	E
	HWP wedge	R
Bandpass	Bandpass efficiency	R
Transfer	Crosstalk	R
function	Detector time constant knowledge	R

I.General context

II.Beam far side-lobes systematic effects

III.Requirements for LiteBIRD

Beam convolution

Source of systematic error

- Because of the optical system, detectors' coverage of the sky is not perfect
- **Reflection and diffraction** on instrument parts
- Possibly high **power pick-up at large angle**
- Beam measurements are tricky and modeling at LB frequencies is hard and time consuming

- Schematic view of the beam profile. In reality :
 - 1. Depends on frequency
 - 2. Depends on detector position on the focal plane
 - 3. Has asymmetric structures

M1-140

Beam convolution

Source of systematic error

- Because of the optical system, detectors' coverage of the sky is not perfect
- **Reflection and diffraction** on instrument parts
- Possibly high **power pick-up at large angle**
- Beam measurements are tricky and modeling at LB frequencies is hard and time consuming

May 23

M1-140 Log₁₀(µK_{CMB})

Calibration scheme

- 4 regions in beams depending on dominant effects
- Two calibration phases :
 - 1. On the **ground**
 - 2. In flight using planets

I.General context

II.Beam far side-lobes systematic effects

III.Requirements for LiteBIRD

- Beam systematics controled by calibration → setting **requirements** on calibration accuracy
- Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

- Beam systematics controled by calibration \rightarrow setting requirements on calibration accuracy
- Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

Beam convolved maps

- Beam systematics controled by calibration \rightarrow setting requirements on calibration accuracy
- Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

- Beam systematics controled by calibration \rightarrow setting requirements on calibration accuracy
- Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

May 23

- Beam systematics controled by calibration \rightarrow setting requirements on calibration accuracy
- Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

May 23

- Beam systematics controled by calibration \rightarrow setting requirements on calibration accuracy
- Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

May 23

- Beam systematics controled by calibration \rightarrow setting requirements on calibration accuracy • Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

Beam perturbatio

- Perturb beam in **one single freq channel and one single angular window** at a time to distinguish effect on total Δr_{FSL} from each channel
- Find perturbation δB in each channel such that the bias on r reaches the channel's budget δr_w^v

 $\Delta r_{\rm FSI}$

• First case: assume same error budget in each channel and total FSL error~3 % of total LB systematics

$$\delta r_W^{\nu} = \Delta r_{\rm FSL} / (n_{\nu} \times n_W) = 1.9 \times 10^{-5} / 66$$

May 23

n
$$\rightarrow \delta r_{\rm pert}$$

$$\Box = \sum_{\nu,W} \delta r_W^{\nu}$$

• The requirements are set on physical quantities :

$$\delta R_{lim} = \frac{\int \delta B_{lim} \left(\theta\right) W \left(\theta\right) d\Omega}{\int B \left(\theta\right) d\Omega}$$

Difference in power between unpert and pert

May 23

ν	m LFT										
(GHz)	40	50	60	68		78		89		100	119
$4 \deg < \theta < 8 \deg$	-23.54	-13.45	-17.68	-13.27	-8.02	-18.36	-16.43	-23.14	-15.50	-25.61	-27.57
$7 \deg < \theta < 12 \deg$	-25.41	-15.51	-19.68	-15.75	-10.99	-19.21	-17.28	-24.13	-16.49	-26.59	-28.46
$11 \deg < \theta$	-27.49	-17.44	-21.53	-18.20	-13.67	-17.41	-16.18	-23.40	-16.27	-26.01	-27.86
ν	LFT			MFT			HFT				
(GHz)	140	100	119	140	166	195	195	235	280	337	402
$4 \deg < \theta < 8 \deg$	-23.23	-26.84	-29.71	-23.92	-34.64	-37.07	-33.00	-35.65	-32.52	-41.78	-38.03
$8 \deg < \theta < 12 \deg$	-23.88	-27.90	-30.71	-24.61	-35.63	-37.89	-34.17	-36.60	-33.34	-42.66	-38.68
$11 \deg < \theta$	-26.69	-25.74	-29.20	-29.83	-33.91	-34.30	-32.73	-34.38	-27.26	-37.79	-38.93

• Because of the denominator, δR_{lim} is not directly measurable

- So, we have to find another quantity, defined from δR_{lim} , closer to what is measured :

•Average of the perturbation amplitude in the window

$$\delta R_{lim} = \frac{\int \delta B_{lim} \left(\theta\right) W \left(\theta\right) d\Omega}{\int B \left(\theta\right) d\Omega}$$

• Yet, because it is robust under change of beam and/or perturbation shape, it is the relevant parameter

 $\delta B_{lim} = \frac{\int \delta B_{lim} \left(\theta\right) W \left(\theta\right) d\Omega}{\int W \left(\theta\right) d\Omega}$

• The requirements are set on physical quantities :

$$\delta B_{lim} = \frac{\int \delta B_{lim} \left(\theta\right) W \left(\theta\right) d\Omega}{\int W \left(\theta\right) d\Omega}$$

*Average amplitude of the pert in the window

May 23

ν (GHz)	m LFT										
	40	50	60	68		78		89		100	119
$4 \deg < \theta < 8 \deg$	-42.55	-34.09	-39.46	-36.70	-30.45	-42.82	-39.42	-48.56	-38.84	-51.80	-54.82
$7 \deg < \theta < 12 \deg$	-46.62	-38.35	-43.67	-41.38	-35.62	-45.87	-42.48	-51.75	-42.04	-54.98	-57.91
$11 \deg < \theta$	-66.40	-57.98	-63.20	-61.52	-56.00	-61.76	-59.07	-68.70	-59.51	-72.09	-75.00
ν	m LFT			MFT	-	HFT					
(GHz)	140	100	119	140	166	195	195	235	280	337	402
$4 \deg < \theta < 8 \deg$	-51.25	-50.65	-54.58	-49.55	-60.87	-63.56	-59.01	-62.92	-60.57	-70.48	-67.91
$7 \deg < \theta < 12 \deg$	-54.11	-53.91	-57.78	-52.45	-64.07	-66.58	-62.38	-66.07	-63.60	-73.57	-70.77
$11 \deg < \theta$	-74.60	-69.44	-73.96	-75.36	-80.06	-80.69	-78.63	-81.55	-75.23	-86.41	-88.72

• The requirements are set on physical quantities :

$$\delta B_{lim} = \frac{\int \delta B_{lim} \left(\theta\right) W \left(\theta\right) d\Omega}{\int W \left(\theta\right) d\Omega}$$

*Average amplitude of the pert in the window

May 23

Depends a lot on the window

ν	LFT									_		
(GHz)	40	50	60	68		78		89		100	119	
$4 \deg < \theta < 8 \deg$	-42.55	-34.09	-39.46	-36.70	-30.45	-42.82	-39.42	-48.56	-38.84	-51.80	-54.82	
$7 \deg < \theta < 12 \deg$	-46.62	-38.35	-43.67	-41.38	-35.62	-45.87	-42.48	-51.75	-42.04	-54.98	-57.91	
$11 \deg < \theta$	-66.40	-57.98	-63.20	-61.52	-56.00	-61.76	-59.07	-68.70	-59.51	-72.09	-75.00	
ν	m LFT	MFT					HFT					
(GHz)	140	100	119	140	166	195	195	235	280	337	402	
$4 \deg < \theta < 8 \deg$	-51.25	-50.65	-54.58	-49.55	-60.87	-63.56	-59.01	-62.92	-60.57	-70.48	-67.91	
$7 \deg < \theta < 12 \deg$	-54.11	-53.91	-57.78	-52.45	-64.07	-66.58	-62.38	-66.07	-63.60	-73.57	-70.77	
$11 \deg < \theta$	-74.60	-69.44	-73.96	-75.36	-80.06	-80.69	-78.63	-81.55	-75.23	-86.41	-88.72	

• In a more realistic setting, we make many measurement in the same angular ring :

$$P_{\text{Calib}}(\vec{r}) = \int \overline{B_{\nu}\,\omega}(\vec{r}' - \vec{r})\,d\Omega'\,\frac{1}{\int \overline{B_{\nu}\,\omega}}$$

Pixel window function

May 23

- Assuming statistical uncertainties only and constant pixel size $\Delta \Omega_{pix}$, we can link the accuracy of calibration to δB_{lim} : $\sigma_{\text{Calib}} = \text{Var}\left(P_{\text{Calib}}\right) = \frac{\int W\left(\theta\right) d\Omega}{\sqrt{\sum_{ij} W^2(\theta_{ij})} \Delta\Omega_{\text{pix}}} \,\delta\overline{B}_{\text{lim}}$
- In addition, we can tune the error budgets between channels to have a common σ_{Calib} throughout the frequency and angular range. Assuming $\Delta \Omega_{\rm pix} = 0.25 \times 0.25 \, {\rm deg}^2$: $\sigma_{\rm Calib} = -56.90 \ \rm dB$

Summary

- LiteBIRD is expected to have unprecedented sensitivity on the measurement of the tensor-to-scalar ratio • Need excellent control of foregrounds and systematic effects
- Among systematic effects, the lack of knowledge of beam **far side-lobes is dominant**
- The impact on cosmological results depends on the difference of power between the estimated and true beams, but it is not an observable quantity
- We find that the effect can be handled through ground and in-flight measurements with required accuracy found to be $\sigma_{calib} \sim -57 dB$, assuming 0.5x0.5 deg² pixels
- For more details on this study, there is a CL et al. paper in prep
- This requirement on calibration accuracy will need to be further refined :
 - Increase the angular resolution
 - Improve the **optical modeling** and consolidate it with measurements on sub-systems. • Study the very far region where measurements are not possible

 - Study the impact of **beam asymmetries**

May 23

16

Grazie !