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LiteBIRD overview

* Lite (Light) satellite for the study of B-mode polarization and
Inflation from cosmic background Radiation Detection

* JAXA’s L-class mission selected in May 2019
, from Sun-Earth Lagrangian point L2

* Large frequency coverage ( , 22 bands) at
angular resolution for precision measurements of the
CMB B-modes
* Final combined sensitivity: , after comp. sep.
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LiteBIRD overview

* Lite (Light) satellite for the study of B-mode polarization and
Inflation from cosmic background Radiation Detection
* JAXA’s L-class mission selected in May 2019 g o oo
, from Sun-Earth Lagrangian point L2 105 sl
* Large frequency coverage ( , 22 bands) at
angular resolution for precision measurements of the ai AAAS
CMB B-modes =
* Final combined sensitivity: , after comp. sep.
* Definitive search for the from
in the CMB polarization

* Current best constraint: r < 0.032 (95% C.L.) (BICEP/Keck +
Planck, see Tristram et al. 2021) | o

* LiteBIRD will improve current sensitivity on r by a factor ~50 T ‘

* L1-requirements (no external data): - T
*Forr =0,
* For r = 0.01, 5-0 detection of the reionization | | |
. . 2 150 500 1000 2000
(2 < £ <10) and recombination (11 < £ < 200) peaks Multipole ¢

* Most LB characteristics and expected results summarized in
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Foreground cleaning

Foreground modeling Impact of foregrounds residual
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Control of systematics

Systematic error formalism

* Systematic errors originate from combination of:
1. Imperfect knowledge of foregrounds

2. Miscorrection of instrumental or environmental effects

I
\4

* Bias defined as the maximum of the cosmological
likelihood, assuming r =0

2+1|C
InL (T):—fskyz 11 C - 1n CY

- 2 _Cg _
Cy = CP° + OF™ + Ny
CE _ TCEGHS + C%ens + N€
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Category

Systematic effect

Type

Beam

Far sidelobes
Near sidelobes

Main lobe

(Ghost
Polarization and shape in band

Cosmic ray

Cosmic-ray glitches

HWP

Instrumental polarization
Transparency in band
Polarization efficiency in band
Polarization angle in band

(zaln

Relative gain in time
Relative gain in detectors
Absolute gain

Polarization
angle

Absolute angle
Relative angle
HWP position

n

I'ime variation

Pol. efficiency Efficiency
Pointing Offset
Time variation
HWP wedge
Bandpass Bandpass efliciency
Transter Crosstalk
function Detector time constant knowledge
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II.Beam far side-lobes systematic effects
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Beam convolution

Source of systematic error
* Because of the optical system, detectors’ coverage of the sky is not perfect

° on instrument parts
* Possibly high

* Beam measurements are tricky and modeling at LB frequencies is hard and
time consuming

B(6)

* Schematic view of the beam profile.
In reality :

1. Depends on frequency
2.

3. Has asymmetric structures
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Beam convolution

Source of systematic error
* Because of the optical system, detectors’ coverage of the sky is not perfect

° on instrument parts
* Possibly high

* Beam measurements are tricky and modeling at LB frequencies is hard and
time consuming

B(0)
 Effect of far side-lobes 5
1.

3. Instrumental polarization [\ _
>

| | T
e 9 -4 Log1o(1Kems) 0
lim
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Calibration scheme

g
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* 4 regions in beams depending on dominant effects

=0.04

* Two calibration phases :
1. On the

2. using planets
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III.Requirements for LiteBIRD
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Requirements on beam knowledge

* Beam systematics controled by calibration — setting on calibration accuracy

* Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

May 23 From Planck to the future of CMB M



Requirements on beam knowledge

* Beam systematics controled by calibration — setting on calibration accuracy

* Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

Beam convolved
maps
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Requirements on beam knowledge

* Beam systematics controled by calibration — setting on calibration accuracy

* Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

Perturbed maps " —— 4deg < 0 < 8deg -
—20 7 T 9 > 11(16‘% 0.8 -
—— Theoretical beam
M
< —407 & —— 4deg < 0 < 8deg
D
Beam convolved - = - Tdeg < 0 < 12deg
= % | — 0 > 1ldeg
Inaps Di —60 0.47
- 3.2+
0.0
Unperturbed maps| . : l ———————
0 10 20 30 40 5 60 70 80 90 ! ’ v b + > W
munpert 9 (D) 9( )
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Requirements on beam knowledge

* Beam systematics controled by calibration — setting on calibration accuracy

* Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

~ CMB
Perturbed maps o

mpert

1. Dipole calibration

Beam convolved 2. Masking

maps

3. Component separation
(spatially homogeneous
foregrounds)

Unperturbed maps | o 5, CMB

munpert unpert
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Requirements on beam knowledge

* Beam systematics controled by calibration — setting on calibration accuracy

* Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

~ CMB
Perturbed maps o

mpert

1. Dipole calibration

Beam convolved 2. Masking <_ Systematic
maps residuals

3. Component separation
(spatially homogeneous
foregrounds)

Unperturbed maps
munpert
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Requirements on beam knowledge

* Beam systematics controled by calibration — setting on calibration accuracy

* Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

~ CMB
Perturbed maps o

mpert

1. Dipole calibration

Beam convolved 2. Masking <_ ) ‘ Systematic | OT 5 ort
per

maps residuals
3. Component separation

(spatially homogeneous

foregrounds)

Unperturbed maps
munpert
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equirements on beam knowledge

R

* Beam systematics controled by calibration — setting on calibration accuracy

* Simulate effect of calibration uncertainty through beam perturbation with variable amplitude

Beam

perturbation 5rpert

* Perturb beam in at a time to distinguish effect
on total Ar_ from each channel

o Find perturbation 0B in each channel such that the bias on r reaches the channel’s budget or,,
ATpsy, = Z 0Ty
v, W

* First case: assume same error budget in each channel and total

57“%/ — ATFSL/ (TLV X nw) = 1.9 X 10_5/66
104
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equirements on beam knowledge

—30
* The requirements are set on physical quantities : ddeg < 6 < 8deg
—40 . Tdeg < 0 < 12deg
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e Because of the denominator,

equirements on beam knowledge

| 0Biim (0) W (0) dS2
O fiim, = [B(0)dO

* Yet, because it is robust under change of beam and/or perturbation shape, it is the relevant parameter

» So, we have to find another quantity, defined from oR ., closer to what is measured :
55 [ 0 Biim (0) W (0) dS2
lim =

o [ W (0)d

> Average of the perturbation amplitude in the window
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equirements on beam knowledge

R

* The requirements are set on physical quantities :

—40

6B )W (9)dQ =

OBiim = [W (6)dS '
)
= Il 0000 SN
O <106
> Average amplitude of the pert in the window
-T2 =
0 lb Qh Bb 4b 5b ﬂb b 85 90
0 (°)
v LET
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LET | ~ MFT | | ~ HFT

7
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11 deg < 6
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equirements on beam knowledge

R

* The requirements are set on physical quantities :

—40

6B )W (9)dQ =

OBiim = [W (6)dS '
)

= Il e

A, -100
> Average amplitude of the pert in the window

-T2 =

Depends a lot on the window 0 10 2 30 40 5 6 T 50 90
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Requirements on beam knowledge

* In a more realistic setting, we make many measurement in the same
angular ring :

Pcaiib (1) = /%@if’ — 7) d§Y’ fB—,,wtf")dQ’ @

Pixel window function Noise
e Assuming only and AQ |
pix
. . . . "-.... >
we can link the accuracy of calibration to 0B, KRN :
o .....“"“‘ FAQ
[ W (0)d 5

Ocalib = vVar (Poalib) = 0 Blim

\/Zij W= (eij)AQpiX

* In addition, we can tune the error budgets between channels to have a

common o__. throughout the frequency and angular range. Assuming

OCalib — —56.90 dB
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Summary

* LiteBIRD is expected to have unprecedented sensitivity on the measurement of the tensor-to-scalar ratio
* Need excellent control of foregrounds and systematic effects
* Among systematic effects, the lack of knowledge of beam

* The impact on cosmological results depends on the difference of power between the estimated and true beams,
but it is not an observable quantity

* We find that the effect can be handled through ground and in-flight measurements with required accuracy
found to be , assuming 0.5x0.5 deg” pixels

* For more details on this study, there is a CL et al. paper in prep

* This requirement on calibration accuracy will need to be further refined :
* Increase the angular resolution
* Improve the and consolidate it with measurements on sub-systems.
* Study the where measurements are not possible
* Study the impact of
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Grazie !
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