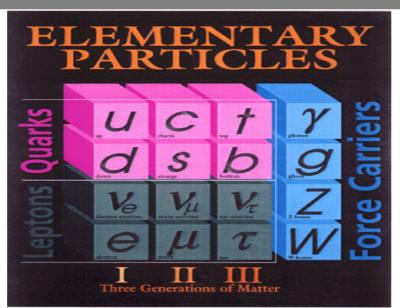
# **3 minutes talk**

### **Emidio Gabrielli**

#### PA (FIS/02)


#### **Research Area: Theoretical Particle Physics**

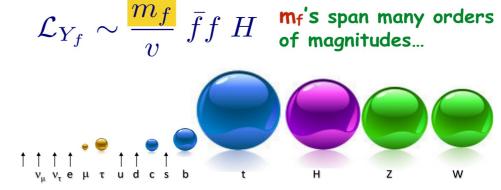
Department of Physics Theoretical Section University of Trieste

Address: Leonardo Building, Strada Costiera 11

### Particle physics: where are we

SM proposed by Glashow, Weinberg, Salam during the sixties



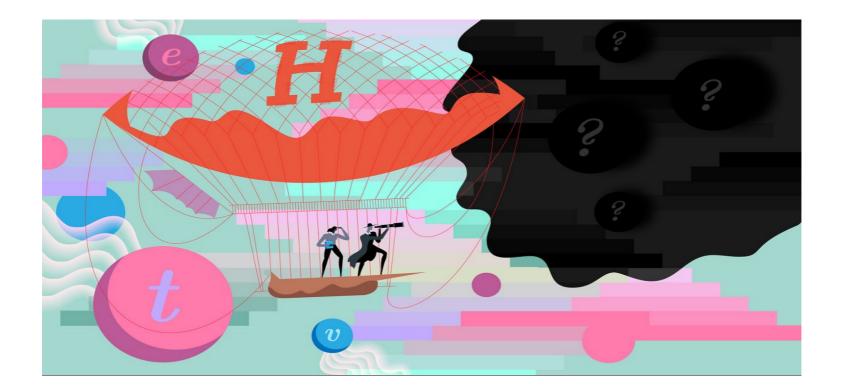

### + Higgs boson

- Standard Model (SM) theory successfully describes all known interactions between fundamental matter constituents: quarks and leptons
- All SM particles acquire masses by the Higgs mechanism that predicts the Higgs boson (spin-0)
- Higgs boson discovered in 2012 at the Large Hadron Collider (LHC) at CERN with mass ~ 125 GeV
- All measurements in perfect agreement with SM predictions !
- NO signals of New Physics so far

### Why do we need New Physics then ?

Mystery in Hierarchy of SM Yukawa's

- SM does not explain:
  - origin of Dark Matter




- barion-antibarion asymmetry in the Universe (requiring add. CP violation)
- why Higgs boson mass is so light (large UV corrections expected)
- Many New Physics (NP) models proposed: Supersymmetry, composite Higgs, extra-dimensions, etc. well explored at the LHC

Maybe NP could be more exotic  $\rightarrow$  ultralight and feebly coupled

Possible candidate the Dark Sector

# voyage into the dark sector..



Dark sector made of new particles neutral to SM interactions – dark-fermions, dark-scalars, dark-gauge-bosons, higher spins...

It can have its own interactions (mediated by dark-photons, etc..)

Can explain the origin of Dark Matter and Flavor hierarchy problem

# Current research projects

national and international collaborations

- Exploring phenomenological implications of Dark Sector models and their SM portals at the LHC and future e+e- and muon - antimuon colliders
- Analyzing signatures and production mechanisms for dark-bosons, dark-fermions, axion-like particles, massive gravitons
- Searching for direct and indirect effects of Dark Sector in low energy experiments:
  - 🕈 g-2
  - 🕈 light meson decays
  - 🕶 neutron lifetime puzzle

# Other theoretical research lines

B meson and top-quark physics

testing QM and New Physics with Bell inequalities at high energy

Searching for NP in the Higgs boson rare decays

Electro-Weak radiative corrections to gravitational processes (including FCNC graviton interactions)