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Proviamo ad immaginare una catastrofe cosmica



Non è solo immaginazione, possiamo calcolare.



Noi, ora, catastrofi di questo tipo le possiamo 
anche osservare... 



After the first observing run, both LIGO detectors under-
went commissioning to reduce instrumental noise, and to
improve duty factor and data quality (see Sec. I in the
Supplemental Material [11]). For the Hanford detector, a
high-power laser stage was introduced, and as the first step
the laser power was increased from 22 to 30 W to reduce
shot noise [10] at high frequencies. For the Livingston
detector, the laser power was unchanged, but there was a
significant improvement in low-frequency performance
mainly due to the mitigation of scattered light noise.
Calibration of the interferometers is performed by

inducing test-mass motion using photon pressure from
modulated calibration lasers [12,13]. The one-sigma

calibration uncertainties for strain data in both detectors
for the times used in this analysis are better than 5% in
amplitude and 3° in phase over the frequency range 20–
1024 Hz.
At the time of GW170104, both LIGO detectors were

operating with sensitivity typical of the observing run to
date and were in an observation-ready state. Investigations
similar to the detection validation procedures for previous
events [2,14] found no evidence that instrumental or
environmental disturbances contributed to GW170104.

III. SEARCHES

GW170104 was first identified by inspection of low-
latency triggers from Livingston data [15–17]. An auto-
mated notification was not generated as the Hanford
detector’s calibration state was temporarily set incorrectly
in the low-latency system. After it was manually deter-
mined that the calibration of both detectors was in a
nominal state, an alert with an initial source localization
[18,19] was distributed to collaborating astronomers [20]
for the purpose of searching for a transient counterpart.
About 30 groups of observers covered the parts of the sky
localization using ground- and space-based instruments,
spanning from γ ray to radio frequencies as well as high-
energy neutrinos [21].
Offline analyses are used to determine the significance of

candidate events. They benefit from improved calibration
and refined data quality information that is unavailable to
low-latency analyses [5,14]. The second observing run is
divided into periods of two-detector cumulative coincident
observing time with ≳5 days of data to measure the false
alarm rate of the search at the level where detections can be
confidently claimed. Two independently designed matched
filter analyses [16,22] used 5.5 days of coincident data
collected from January 4, 2017 to January 22, 2017.
These analyses search for binary coalescences over a range

of possible masses and by using discrete banks [23–28] of
waveform templates modeling binaries with component
spins aligned or antialigned with the orbital angular momen-
tum [29]. The searches can target binary black hole mergers
with detector-frame totalmasses2M⊙≤Mdet≲100–500M⊙,
and spin magnitudes up to∼0.99. The upper mass boundary
of the bank is determined by imposing a lower limit on the
duration of the template in the detectors’ sensitive frequency
band [30]. Candidate events must be found in both detectors
by the same templatewithin 15ms [4]. This 15-mswindow is
determined by the 10-ms intersite propagation time plus an
allowance for the uncertainty in identified signal arrival times
of weak signals. Candidate events are assigned a detection
statistic value ranking their relative likelihood of being a
gravitational-wave signal: the search uses an improved
detection statistic compared to the first observing run [31].
The significance of a candidate event is calculated by
comparing its detection statistic value to an estimate of
the background noise [4,16,17,22]. GW170104was detected

FIG. 1. Time–frequency representation [9] of strain data from
Hanford and Livingston detectors (top two panels) at the time of
GW170104. The data begin at 1167559936.5 GPS time. The
third panel from the top shows the time-series data from each
detector with a 30–350 Hz bandpass filter, and band-reject filters
to suppress strong instrumental spectral lines. The Livingston
data have been shifted back by 3 ms to account for the source’s
sky location, and the sign of its amplitude has been inverted to
account for the detectors’ different orientations. The maximum-
likelihood binary black hole waveform given by the full-pre-
cession model (see Sec. IV) is shown in black. The bottom panel
shows the residuals between each data stream and the maximum-
likelihood waveform.
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GW170104

pair of stellar mass black holes: 31 M⊙ +  19 M⊙

luminosity distance ≈ 880 Mpc
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Note that the mass estimates shown here do not include uncertainties, 
which is why the final mass is sometimes larger than the sum of the 
primary and secondary masses. In actuality, the final mass is smaller 
than the primary plus the secondary mass. 

The events listed here pass one of two thresholds for detection. 
They either have a probability of being astrophysical of at least 50%, 
or they pass a false alarm rate threshold of less than 1 per 3 years.

KEY



Resta ancora moltissimo da fare ... 

Visitate i nostri siti web:
www.ligo.org

www.virgo-gw.eu

gwcenter.icrr.u-tokyo.ac.jp/en/

http://www.ligo.org/
http://www.virgo-gw.eu/
https://gwcenter.icrr.u-tokyo.ac.jp/en/

