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The era of neutrinos !
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Why neutrinos?
+ Similarly, to the discovery of Fermi scale with nuclear b-decays, we are now on a 
fishing expedition to the next energy scale of the (necessary!) New Physics:

Hitoshi Murayama (Berkley, Kavli) 
@ Higgs workshop 2013
(arXiv:1401.0966)

Neutrino oscillation are sensitive to very tiny effects similarly to interferometry. 
Unique tool to study very high energy scale (today L~1014GeV)

+ What is the New Symmetry hidden behind the mass 
and flavour mixing? 

+ Search of Charge-Parity violation in the leptonic sector 
(related with matter/antimatter asymmetry in the Universe)

Independently on model: a new fundamental source of CP violation!
→ Major next discovery of HEP 

T2K results made the
April 2020
Nature cover!
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Neutrinos as door to New Physics
 Expansion of Lagrangian in terms of NP energy scale (L

UV
):

SM as effective theory valid until UV cutoff

The only 5th order operator possible 
according to fundamental 
symmetries: neutrino (Majorana!) 
mass is the first order effect of NP

2462

1015 GeV≈10−2 eV

→ Naturally emerging in leptogenesis scenarios to create matter/antimatter asymmetry

→ New type of fundamental particle

→ Discovery of lepton number violation (accidental conservation in SM: no symmetry 
    supporting it)

 Peculiar nature of n and being in direct contact 
with L

UV
: natural to expect new type of 

interactions for neutrinos: Non Standard 
Interactions 

GFϵNSI ( ν̄ ν)( f̄ f )



  

A neutrino life

Neutrino sources

2 - oscillations1 - production 3 - detection

● astrophysics : sun, 
cosmics rays

● artificial : nuclear reactors,
accelerators  
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The topic I will focus on



  

A neutrino life
2 - oscillations1 - production 3 - détection
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A neutrino life
2 - oscillations1 - production

3 - détection
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Detectors typically composed of

- active targets (large mass needed)

- possibly additional detectors (eg Time 
Projection Chambers) to identify and 
measure outgoing particles

- external veto to reject background

Charged current interactions used to 
identify the flavor of the neutrinos

With neutrino from accelerators measure oscillation by comparing n flavor at near detector 
nearby the source (before oscillation) and at far detectors far away (after oscillation) 



  

SuperKamiokande
1996 – today!
1998 Discovery of n oscillation 
from zenith angle dependence 
of atmospheric n

m
 rate 

Sudbury Neutrino 
Observatory (SNO)
1999 – today!

n
e
 / Sn

a
 ~ 1/3

2001 Solution of solar 
puzzle:

A bit of (recent) history...



  

SuperKamiokande
1996 – today!
1998 Discovery of n oscillation 
from zenith angle dependence 
of atmospheric n

m
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Need confirmation from accelerator experiment: 
high purity and tunable neutrino flux(1999-2006) K2K
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(2008-2012) OPERA : 5 n
m
 → n

t
 events obs.

Sudbury Neutrino 
Observatory (SNO)
1999 – today!

n
e
 / Sn

a
 ~ 1/3

2001 Solution of solar 
puzzle:

A bit of (recent) history...



  

SuperKamiokande
1996 – today!
1998 Discovery of n oscillation 
from zenith angle dependence 
of atmospheric n

m
 rate 

Need confirmation from accelerator experiment: 
high purity and tunable neutrino flux(1999-2006) K2K

2003 – 2015 MINOS (→ MINOS+)

Beyond n
m 

disappearance:

→ observation of n
e
 apperance

T2K (2010 - today)

→ first hints on Mass Ordering

→ first results on CP violation

NOVA (2013 - today)

(2008-2012) OPERA : 5 n
m
 → n

t
 events obs.

Sudbury Neutrino 
Observatory (SNO)
1999 – today!

n
e
 / Sn

a
 ~ 1/3

2001 Solution of solar 
puzzle:

A bit of (recent) history...
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Neutrinos with beams around the world
Neutrino oscillation physics with accelerators entered the precision era with NOVA and 
T2K → next generation experiments will be worldwide efforts comparable to collider 
experiments

FNAL beams
- NOVA

- DUNE

KEK (JPARC) beam
- T2K

- T2HK

CERN 
Neutrino 
Platform

… and many other experiments 
and new facilities 
(mentioned later)

Neutrino physics has a rich present and a bright future!

Nuclear theory 
and 

phenomenology
community

- R&D

(SBND, MicroBoone, MINOS, 
Minerva, ...)

(NINJA, ...)



  

Neutrino oscillations
n
m
 disappearance

n
e
 appearance

T
2

K
 p

re
li m

in
a

ry  R
u

n
1

- 1
0

n
m
 spectrum at the far detector

(simplified 2-flavors 
approximation)

amplitude frequency

Full 3-flavors formalism:  Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
U

ai
 are expressed in terms of 

3 mixing angles (q
13

, q
23

, q
12

) 
and a phase d

CP

3 mass states → two dm2: solar (small) and atmospheric (large) 
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n
e
/n

e
 appearance: d

CP 
and MH

Mass Hierachy : is the mass ordering the same for charged and neutral leptons? (→what is 
the fundamental symmetry hidden behind neutrino oscillation) 

d
CP

 parametrizes different oscillations for n and n → new fundamental source of CP 

violation (and first in leptonic sector!)

T2K baseline and energy

longer the baseline → 
larger MH sensitivity
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NOVA
Far: 14 kT on the surface

– Placed 14mrad off-axis to produce a
narrow-band spectrum

NUMI beam at FNAL
Near Detector: 300T 
underground

Baseline: 810km

– Functionally identical near and far detectors
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NOVA: d
CP

 and MH

Sensitive to both 
d

CP
 and MH with 

some degeneracies
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T2K

- Placed 2.5deg off-axis to produce 
narrow-band flux

T2K experiment

ND280 near detector

m

clear 
ring

fuzzy 
ring

- Huge water 
cherenkov detector 
(50 kTon) with 
optimal m/e 
identification to 
distinguish n

e
, n

m
 T2K Run 1-10 preliminary

- Full tracking 
and particle 
reconstruction 
(magnetized!):
measure 
precisely 
neutrino and 
antineutrino rate 
before oscillation
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T2K: d
CP

T2K Run 1-10 preliminary 

Small MH sensitivity →  
clean measurement of d

CP
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T2K → T2K-”2”→ T2HK
- Beam upgrade from 500kW to 750kW in 2022 for T2K → 1.3MW in HyperKamiokande era

- Hyperkamiokande: huge water 
cherenkov detector on JPARC beam

- 190kTon fiducial mass (x8.4 SuperKamiokande)

- PMTs with double sensitivity of SuperKamiokande

→ more than x20 SuperKamiokande beam 
neutrino rate

- Seamless program of neutrino beam

→ enabling very fast CP-violation discovery

- T2K-”2” will push further the study of 
systematics at % level with upgrade of near 
detector ND280.

T2K T2K-2 T2HK

- ND280 upgrade will be ported from T2K to 
HK: robust path to calibration/systematic 
understanding from day 1 of HK
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HyperKamiokande sensitivity
Unknown MH: combination of atm and 
beam neutrinos to measure dCP and MH 

→ x8 SuperKamiokande natural neutrino rate

CP-violation sensitivity with known 
mass hierarchy:
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DUNE
New wide-band neutrino beam at Fermilab: 1.2MW → 2.4MW with a 1300km baseline 

- Cover two oscillation 
maxima → a lot of shape 
information to exploit for 
precision physics on PMNS 
paradigm

- To exploit full sensitivity a 
shape analysis is needed 
→ need extremely good 
resolution on neutrino 
energy reconstruction

- engagement of US in neutrino physics: 
huge enlargement of neutrino 
oscillation community and resources!
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DUNE technology
(Relatively) new technology to be deployed to unprecedented scale: 
huge LAr TPCs with charge readout

- 4 LAr TPC: 4 x 10kTon fiducial mass
with staged approach

ArgoNeut (~250 kg LAr)

MicroBoone (~170 Ton LAr)

ProtoDUNE-SP demonstrator (17.5 kTon LAr)

- Full reconstruction of final state particles 
(~bubble chamber)

ICARUS (~500 Ton LAr)
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LAr 
measurements

Not only R&D for technology but also measurements to control nuclear model in Argon

PHYSICAL REVIEW LETTERS125,201803 (2020)
- MicroBoone:

Proto-DUNE prototypes at CERN to 
validate the technology on large scale
(1:20 scale to the final detector)
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DUNE sensitivity

- Very fast MH 
determination at 5s

- Precision physics: 
prospects for d

CP
, Dm2 

resolution
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Importance of systematics
❑ Precision physics will be dominated by systematics

- ~2000 of n
e
 (n

e
) and ~10000 events n

m
 (n

m
) 

 → precision measurements require very good control of neutrino energy 
spectrum shape

Measurement of d
CP

 <15deg and of Dm2 ~ 1% require 

control of energy scale (calibration + nuclear effects) <1%

❑ Crucial role of near detectors

❑ Crucial role of present experiments (T2K – NOVA) to open the road to % systematics 
and indicating analysis strategies and detector design enabling such precision

→ first order systematic is the normalization of n
e
 / n

e
 for CPV and MH

HK flux & 
beamline

Without forgetting crucial ancillary measurements like EMPHATIC, ANNIE, 
electron-scattering at JLab...
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Near detectors and nuclear theory

ND measures rate vs neutrino 
energy before oscillation
→ characterize flux and xsec 

RFD
ν '
=∫Φ

ν
(Eν)Posc

ν→ν '
(Eν)

d σν '

dEν

dEν

~same flux at ND and FD

what we want to measure: 
oscillation probability

RND
ν '
=∫Φ

ν
(Eν)

d σν '

dEν

dEν

cross-section must be extrapolated from 
ND to FD: 
- different neutrino energy distribution
- ND measure flux times xsec
Need nuclear theory models!

Flux simulation and tuning 
(NA61/SHINE + MIPP)

F
ra

ct
io

na
l u

n
ce

rt
a

in
ty
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Near detectors and nuclear theory
ND measures rate vs neutrino 
energy before oscillation
→ characterize flux and xsce 

RFD
ν '
=∫Φ

ν
(E ν)P osc

ν→ν '
(E ν)

d σν '

dE ν

dE ν

~same flux at ND and FD

what we want to measure: 
oscillation probability

RND
ν '
=∫Φ

ν
(Eν)

d σν '

dEν

dEν

cross-section must be extrapolated from 
ND to FD: 
- different neutrino energy distribution
- ND measure flux times xsec
Need nuclear theory models!

n-nucleus interaction 
modeling and tuning 

(and similarly for pion(s) production)

- Nuclear theory
- External data (eg e-scattering)
- n-nucleus xsec measurements at 
near detectors and dedicated 
experiments (Minerva, ArgoNeuT, ..) 

→ fundamentally the name of the 
game: precise En reconstruction 
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New generation of near detectors
● T2K is preparing an upgrade of ND280 to be installed in 2022 to cope with 

increased statistics after beam upgrade and for HyperKamiokande 

Scintillator with 3D track 
reconstruction capabilities

→ low threshold on 
proton, pion momentum

→ measurement of 
neutrons with ToF

● Full exclusive reconstruction of final state for best 
neutrino energy ‘reconstruction’ from outgoing 
interaction particles

→ for the first time neutron reconstruction event by event!

Horizontal TPCs to enlarge angular 
acceptance
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Opening the road...

- Hadron-muon transverse 
momentum unbalance for 
‘direct’ measuring of nuclear 
effects
(ND280) 

- First usage of neutrons in 
neutrino-nucleus scattering
(Minerva)

Phys.Rev.D 103 (2021) 11, 112009Phys.Rev.D 98 (2018) 3, 032003

Phys. Rev. D 100, 052002 (2019) 
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New approach 
to near to far extrapolation

Extract En dependence from off-axis angle

HyperKamiokande Intermediate 
Water Cherencov Detector (IWCD)



30

New approach 
to near to far extrapolation

Extract En dependence from off-axis angle

Neutrino 
beam

DUNE LAr and GAr TPCs as movable near detectors: DUNE-Prism
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New approach 
to near to far extrapolation

- Nuclear-level systematics becomes ‘second order’
→ quantification on-going (acceptance, finite statistics, ...)

- Need to control well flux systematic uncertainties vs angle and flux stability vs time 
(DUNE SAND, T2(H)K INGRID) 

Extract En dependence from off-axis angle
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Beyond PMNS
- The ‘standard’ oscillation paradigm (PMNS-based) is very strict and not motivated by 
fundamental symmetries (mixing angles and neutrino masses are ‘accidental’ numbers).
In particular it assumes - minimal 3-flavour scenario

- standard neutrino interactions for production and detection

- standard matter effects along propagation

Short Baseline Neutrino 
program at FNAL. 

MINOS/MINOS+/reactors
results

Steriles: new neutrino states with different Dm2 →  
oscillations at different L/E

Sensitivity:
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BSM surpises?
Steriles (of many different types) → inventive ways of use near detectors 

- ND280: decay of N 
in TPC gas volume 
(~no background)

- DUNE tau n 
appearance at near 
detectors

- MicroBooNE: 
delayed N decays

- Heavy Neutral Leptons from 
K decays in the beam

Sensitivity depending on energy shape 
uncertainty

Phys. Rev. D 101, 052001

Phys. Rev. D 100, 052006 (2019)



34

Beyond PMNS
- The ‘standard’ oscillation paradigm (PMNS-based) is very strict and not motivated by 
fundamental symmetries (mixing angles and neutrino masses are ‘accidental’ numbers).
In particular it assumes - minimal 3-flavour scenario

- standard neutrino interactions for production and detection

- standard matter effects along propagation

Non Standard Interactions: a door to new physics. (And more: CPT-violation, ...)
Need to able to disentangle from “standard” oscillation effects

Eg: new sources 
of CP-violation in 
NSI from 
non-diagonal 
terms in matter 
potential

moving to 
different 
(L/)E

C
IP

A
N

P
 20

1
8, 

P
rint:1

809
.111

2
8 [h

ep-p
h]
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Most general paradigm
- Expand the oscillation study with a more general paradigm: with next generation of 
experiments we will look at oscillations with a much more open-mind approach: 
we want to characterize the L/E dependency of flavour mixing

Eg: can we search for fundamental CP 
violation in a more model-independent way?

- allow for arbitrary (non-standard) matter effect - 

- allow for arbitrary (non-unitary) mixing between 
flavour and energy eigenstates (even different for 
production and detection) 

arXiv:2106.16099 [hep-ph]

→ search for T-violation → look for L 
dependency of oscillations at fixed energy 

No good fit with 
L-even terms 
only → 
T-Violation !

https://arxiv.org/abs/2106.16099
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New ideas and new facilities
● Improved beams for more 

precise control of neutrino flux

- EnBET: instrumented decay tunnel 
for precise (1%) measurement of n

e
 

from K decays

- THEIA: water based (doped) optical detector for comprehensive 
neutrino program (scintillation + Cherenkov)

- nSTORM: muon storage ring giving 
very well known n

e
 and n

m
 fluxes

(R&D toward Neutrino Factories)

● Neutrinos at LHC: FASER
in forward region after 
defocusing charged particles→ 
En~TeV

● Next-to-next generation detectors:

- ESSnSuperBeam: 2nd oscillation + HIFI
(demonstrator for low energy nSTORM) 
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Summary

● Neutrino oscillation physics with “neutrino beams” entering the 
precision era with NOVA and T2K → next generation experiments 
are worldwide efforts comparable to collider experiments

● Oscillation measurements made the cover of Nature in April 2020 
with a statistically limited measurement: join us for interesting 
physics ahead!

● Next generation of experiments (DUNE, HK) relies on control of systematics at % level 
→ crucial role of near detectors: a new generation coming

- T2K and NOVA are opening to road to exercise new near detectors, new analyses 
techniques, … 

- … long term work in collaboration with nuclear theory community

- Important R&D involved (CERN Neutrino Platform)

● A vibrant community ready to react to the ‘unexpected’: new systematics and/or 
BSM signs → inventive in the usage of near detectors and in the exploration 
of complementarity between HK and DUNE
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