Nuclear transfer reactions with the Lagrangemesh method

Shubhchintak

Physique Nucléaire Théorique et Physique Mathématique Université Libre de Bruxelles, Belgium

This project has received funding from the European Union's 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 801505.

Nuclear structure from reaction

Nuclear Astrophysics

Formation of elements

BBN, Stellar nucleosynthesis, novae, supernovaeVarious processes

To study various processes

□Nuclear reaction rates at small energies are needed.

For p + p, $E_c = 550 \text{ keV}$ At $T = 0.01 \times 10^9$ (av. Stellar temp.) E = 0.86 keV

Nuclear transfer reactions

$$A(=a+c) + t \to B(=c+t) + a$$

Different approaches: DWBA, ADWA, CDCC, Faddeev method

In the DWBA formalism the scattering matrix is:

$$U_{\alpha\beta}^{J\pi} = -\frac{i\sqrt{SF_ASF_B}}{\hbar} \langle \chi_{L_B}^{J\pi}(\mathbf{R}') \Phi_{\ell_B}^{I_B}(\mathbf{r}_B) | \mathcal{V} | \chi_{L_A}^{J\pi}(\mathbf{R}) \Phi_{\ell_A}^{I_A}(\mathbf{r}_A) \rangle$$
$$\mathcal{V}_{post} = V_{ac} + U_{at} - U_{aB}$$
Remnant terms
$$\mathcal{V}_{prior} = V_{ct} + U_{at} - U_{At}$$
Can be neglected ??

e.g. in (d, p) reaction post form p-A_t & p-(A_t+1) appear nearly same for a heavy target

Sources of uncertainties!

Which information?

Comparing the measured angular distribution with the theoretical calculations one can have:

- ℓ (orbital angular momentum), J
- Spectroscopic factor (SF)
- Or asymptotic normalisation coefficient (ANC)
- width (Γ) in case final state is a resonance
- ANC/SF also give information about radiative width

Indirect tool in Nuclear astrophysics:

$$\Gamma \to \sigma^{Res}$$
 $\sigma^{DC} = \sum_{l_i l_f} SF(l_f) \sigma^{DC}_{l_i l_f}$ $\sigma \longrightarrow$ reaction rate

For e.g. ¹³C(³He, d)¹⁴N \longrightarrow ANCs for ¹⁴N states \longrightarrow ¹³C(p, γ)¹⁴N *PRC* 62, 024320 (2000). Similarly (⁶Li, d) and (⁷Li, t) were used for (α , γ) and (α , n). *J. Phys. G: Nucl. Part. Phys.* 43 (2016) 043001

Need of efficient numerical techniques!!

R-matrix and Lagrange mesh methods

To make Hamiltonian as Hermitian over (0, a), use Bloch operator

$$\mathscr{L} = \frac{\hbar^2}{2\mu} \,\delta(r-a) \frac{d}{dr} \qquad (H + \mathscr{L} - E)\chi^{int} = \mathscr{L}\chi^{int} = \mathscr{L}\chi^{ext}$$

• Expansion in square-integrable basis is now possible.

R-matrix method

• Beyond making H+£ Hermitian, the Bloch operator enforces the continuity of the derivative of the wave function.

Channel radius is not a fitting parameter

R-matrix and Lagrange mesh methods

D. Baye, Phy. Rep. 565 (2015) 1. In the internal region the wave function is expanded over the Lagrange basis

- They are orthonormal basis, vanishes at all but one mesh point.
- Gauss quadrature (GQ) associated with the mesh. N = basis size

Lagrange Condition

 $\phi_i(ax_j) = \frac{1}{\sqrt{a\lambda_j}} \delta_{ij}$ Weight of the Gauss quadrature approximation associated $\int_{a}^{b} g(x)dx \approx \sum_{i=1}^{N} \lambda_i g(x_i)$

Choice of Lagrange functions depend upon the interval

Matrix elements of the overlap and of the potential $\langle \phi_i | \phi_j \rangle = \delta_{ij}$ $\langle \phi_i | V | \phi_j \rangle = V(ax_i)\delta_{ij}$

Large channel radius need large number of basis !!

Test cases

Shubhchintak, Descouvemont, Phys. Rev. C 100, 034611 (2019).

Convergence of cross sections with channel radius and Number of basis

N ~ 40 is sufficient, much lesser than other methods

Test cases (nucleon transfer)

Shubhchintak, Descouvemont, Phys. Rev. C 100, 034611 (2019).

Shubhchintak, Eur. Phys. J. A 57, 32 (2021).

Dashed lines: With remnant terms Solid lines: Without remnant terms Dotted lines: FRESCO Exp. data and potentials: *NPA 218*, *249 (1974)*

¹²C(7Li, t)¹⁶O

- Case of α transfer
- Has been used for many indirect measurements of ¹²C(α, γ)¹⁶O
- ${}^{12}C(\alpha, \gamma){}^{16}O$ is an important astrophysical reaction.
- Cross sections below 300 keV has uncertainties.

Exp. SFs = $0.13^{+0.07}_{-0.06}$ for 0^+_2 = 0.15 ± 0.05 for 2^+_1

SFs	with	Remnant: For 2^+_1			
incre	ease b	by 6 - 14 %, for 0_2^+			
state increased by 30 - 50 %					

Shubhchintak, Eur. Phys. J. A 57, 32 (2021).

Data and potentials: *Oulebsir, Hammache et al. PRC* **85**, 035804 (2012).

C + *t* potential: *D*. *Y*. Pang et al. PRC **91**, 024611 (2015).

Dashed lines: With remnant terms 10 Solid lines: Without remnant terms

Post-Prior Equivalence in DWBA

Sensitivity to the bound state wave functions

Supersymmetric (SUSY) transformation:

D. Baye, PRL 58, 2738 (1987).

$$H_0 = -\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + V_0^{\ell j}(r) \longrightarrow H_2 \quad \text{With} \quad V_2^{\ell j} = V_0^{\ell j} - \frac{\hbar^2}{\mu}\frac{d^2}{dr^2}\log\int_0^r |u_0(s)|^2 ds$$

Number of Pauli-forbidden states (n) in the different systems considered here.

Sensitivity to the bound state wave functions

Shubhchintak, Descouvemont, Phys. Letts. B 811, 135874 (2020).

Put a cut, r_{min} over r_A or r_B

$$\tilde{U}^{J\pi}_{\alpha\beta}(0) = U^{J\pi}_{\alpha\beta}$$
$$\tilde{U}^{J\pi}_{\alpha\beta}(\infty) = 0$$

Dashed lines: With WS Solid lines: With SUSY

Sensitivity to the bound state wave functions

Nucleus	State	Beam energy (MeV)	SFs (WS)	SFs (SUSY)
¹⁷ 0	1/2 ⁺ 1/2 ⁺	25.4 36.0	1.73 2.08	1.22 1.63
¹⁶ 0	0_{2}^{+}	28	0.18 ± 0.04	0.19 ± 0.02
¹⁶ 0	0_{2}^{+}	34	0.24 ± 0.04	0.25 ± 0.03
¹⁶ 0	2_{1}^{+}	28	0.17 ± 0.02	0.15 ± 0.02
¹⁶ 0	2^{+}_{1}	34	0.16 ± 0.02	0.14 ± 0.03

Shubhchintak, Descouvemont, Phys. Lett. B 811, 135874 (2020).

Similar tests with the cutoff for the Peripherality. Important for ANC extraction *Shubhchintak*, *Descouvemont*, *Phys. Rev. C*¹⁴ 100, 034611 (2019).

ANC & radiative capture

For the peripheral $\sigma \propto (ANC)^2$ radiative capture reactions The overlap function (*I*) For $B \rightarrow A + a$ $I_{lsj}(\mathbf{r}_{Aa}) = \langle \phi_A \phi_a | \phi_B \rangle = \text{angular part} \times I_{lsj}(r_{Aa})$ Radial overlap function ANC $I_{lsj}(r_{Aa}) = C_{lsj} W_{-\eta, l+\frac{1}{2}} (2\kappa r_{Aa}) / r_{Aa}$ For $r_{Aa} >> R_n$

 $M = \langle \phi_B | \hat{O}(r_{Aa}) | \phi_A \phi_a \psi_i^+(\mathbf{r}_{Aa}) \rangle = \langle I_{B(Aa)}(\mathbf{r}_{Aa}) | \hat{O}(r_{Aa}) | \psi_i^+(\mathbf{r}_{Aa}) \rangle$

$$\sigma \propto |\mathsf{M}|^2 \\ \propto (\mathrm{ANC})^2$$

Two body Potential model

$$I_{lsj}(r_{Aa}) = \sqrt{S_{lsj}} \,\phi_{lsj}(r_{Aa})$$

S is the spectroscopic factor of the final bound state.

The tail of the bound state wave function:

$$\phi_{lsj}(r_{Aa}) \approx b_{lsj} W_{\eta,l+\frac{1}{2}}(2\kappa r_{Aa})/r_{Aa}$$
 For $r_{Aa} > R_n$

b is the single particle ANC and it depends upon potential.

$$C = S^{1/2} b$$

ANC from transfer measurement

ANC of $a + A \rightarrow B$

B(A+a

Using transfer reaction A(x,y)B

$$\frac{d\sigma}{d\Omega} = (S^B_{Aal_B j_B})(S^x_{yal_x j_x}) \left(\frac{d\sigma}{d\Omega}\right)^{DWBA}$$
$$\frac{d\sigma}{d\Omega} = (C^B_{Aal_B j_B})^2 (C^x_{yal_x j_x})^2 \frac{(d\sigma/d\Omega)^{DWBA}}{b^2_{Aal_B j_B} b^2_{yal_x j_x}}$$

x(a+y

Lithium Problems

Abundace of ⁷Li BBN: $^{7}Li/H = (4.56-5.34) \times 10^{-10}$ J. Cosm. Astrophys. 10, 050 (2014) Observed: $^{7}Li/H = 1.58^{+0.35}_{-0.28} \times 10^{-10}$ Astron. Astrophys. 522, A26 (2010)

First Lithium Puzzle

Hartos, Bertulani, Shubhchintak, Mukhamedzhanov, Hou, Astrophys. J 862, 62 (2018).

 $\alpha + d \rightarrow 6Li + \gamma$ Reaction

First successful Experiment by LUNA at two Big Bang energies 94 and 134 keV *M. Anders et al., PRL. 113, 042501 (2014).*

Photon's angular distribution in $d(\alpha, \gamma)^6$ Li

Red lines : Method 1 (Fix ANC by using Spectroscopic factor) Green lines : Method 2 (Fix ANC from the phase equivalent potential)

Mukhamedzhanov, Shubhchintak, Bertulani, Phys. Rev. C 93, 045805 (2016).

Astrophysical S-factor of $d(\alpha, \gamma)^6$ Li

Mukhamedzhanov, Shubhchintak, Bertulani, Phys. Rev. C 93, 045805 (2016).

E <100 keV, E1 dominates and at higher energies E2 dominates.

BBN: Wagoner, Ap. J. Suppl. Ser. 18, 247 (1969). Kawano, NASA Technical Reports Server (NTRS): Hampton, VA, USA, 1992.

Summary

- •Importance of transfer for astrophysics: SF, ANC, $\Gamma \dots$
- •Utility of R-matrix and Lagrange mesh methods to transfer reactions in DWBA
- •¹⁶O(d, p)¹⁷O, ¹⁶O(d, n)¹⁷F, ¹²C(⁷Li, t)¹⁶O
- •Effects of remnant terms, post-prior equivalence in DWBA
- •Sensitivity of transfer cross sections to bound state wave functions using shallow and deep potentials.
- •Application of ANC to $d(\alpha, \gamma)^{6}$ Li in context of 2nd Li problem

