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Nuclear structure from reaction

Special features 
and important for 

astrophysics
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!BBN, Stellar nucleosynthesis, 
novae, supernovae
! Various processes

To study various processes

!Nuclear reaction rates at 
small energies are needed.

Formation of elements

Nuclear Astrophysics

For   p + p,         Ec= 550 keV
At T = 0.01x109 (av. Stellar temp.)     E = 0.86 keV
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been used to study the important astrophysical reactions like
12C(α, γ )16O, 13C(α, n)16O, 22Ne(α, γ )26Mg, (for details
see for example the review article [10]). It is now well estab-
lished that cross sections of low energy peripheral radiative
capture reactions are mainly determine by the ANCs. Some
recent studies are focused in extracting the (n, γ ) cross sec-
tions for the r process nuclei using (d, p) reactions [4,14,15].

At the simplest, without referring to the internal struc-
tures of the transferred cluster, core of the projectile and the
target, one can consider transfer as a three-body reaction.
Therefore, the same approach can be used for the single par-
ticle as well as for the cluster transfer reactions and with
this picture several theoretical models using different frame-
works and approximations have been developed in the liter-
ature. The standard and the most widely used framework is
the ‘distorted wave Born approximation (DWBA)’ [5]. In this
approximation the transfer is considered as one-step process,
weak enough to be treated as a first order perturbation. Other
methods such as the adiabatic method [16], the continuum
discretized coupled-channel (CDCC) method [17] and the
Faddeev method [18,19] are more advanced than standard
DWBA. Among these, the Faddeev method uses the exact
three-body wave function while the adiabatic and the CDCC
methods approximate it better than the DWBA by including
breakup effects. For a comparison of these methods one can
see, for example, Refs. [17,20,21]

Modern calculations, like those in the CDCC method, are
demanding in terms of computer capabilities. The availabil-
ity of efficient numerical techniques is therefore an impor-
tant issue. As a first step in this direction, in Refs. [22,23]
we have applied the combined R-matrix [24,25] and the
Lagrange mesh [26] methods, to the transfer reaction study
in the DWBA frame work. Apart from simplifying the cal-
culations, usage of these methods lead to fast and accurate
numerical computations.

This paper is a short review of our work on transfer reac-
tions, where apart from the utility of the R-matrix and the
Lagrange mesh methods, I also discuss about the sensitivity
of the transfer cross sections to the bound state wave func-
tions [23]. For this, a supersymmetric bound state partner
of the Woods-Saxon potential is used, which gives a differ-
ent wave function in the nuclear interior but have the same
asymptotics. Comparing the calculated cross section with the
data for reactions under consideration, changes in the SFs are
estimated. As mentioned earlier, the same framework can be
used for the nucleon as well as for the cluster transfer reac-
tions, so here I consider one example for each of them. In
particular, I consider the 16O(d, n)17F and the 12C(7Li, t)16O
reactions which are the specific examples of proton and of
α transfer, respectively. The latter reaction we have studied
in Refs. [22,23] along with the 16O(d, p)17O, but our results
for the former have not been presented before.
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Fig. 1 Schematic diagram of transfer process where a cluster c is trans-
ferred from the projectile A to the target t . The angles Ω and Ω ′ are
associated with the coordinates R and R′

The paper is organized as follows. In Sect. 2, I present the
DWBA formalism of transfer reactions and also discuss in
brief about the R-matrix and the Lagrange mesh methods.
Section 3 consists of results and discussion and finally I
summarize in Sect. 4.

2 Formalism

2.1 DWBA theory of transfer reactions

I give here brief details of the DWBA formalism, which of
course has been discussed in many textbooks and reviews
[5–8,27]. For more details about the current approach one is
referred to [22]. We consider a projectile A which transfers a
cluster/nucleon c to the target t (spin-less in our case) leading
to the formation of a residual nucleus B and an outgoing core
a in the final channel. This rearrangement reaction can be
written as

A(= a + c)+ t → B(= t + c)+ a. (1)

Figure 1 displays the various coordinates involved in the
above process. The three-body Hamiltonian associated with
this transfer process (1) can be defined in the “prior” repre-
sentation [5,6] as

Hprior = HA(rrr A)+ TRRR + Vct (rrr B)+Uat (rrrat ), (2)

or, in the “post” representation, as

Hpost = HB(rrr B)+ TR′R′R′ + Vac(rrr A)+Uat (rrrat ), (3)

where Vi j are the binding potentials between clusters i and
j and they are generally obtained by fitting the spectro-
scopic properties such as binding energies or root-mean-
square radii. Uat is the optical potential between a and t
which is generally fitted to the elastic scattering data and is
also called core-core potential. rrrat is the distance between
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A( = a + c) + t → B( = c + t) + a
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Remnant terms

In the DWBA formalism the scattering matrix is:

Di!erent approaches: 
DWBA, ADWA, CDCC, Faddeev method

Can be neglected ??

e.g. in (d, p) reaction 
post form p-At & p-
(At+1) appear nearly 
same for a heavy 
target
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Sources of uncertainties! 
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Which information? 
Comparing the measured angular distribution with the theoretical 
calculations one can have: 
•  (orbital angular momentum), J 
• Spectroscopic factor (SF) 
• Or asymptotic normalisation coe"cient (ANC) 
• width ( ) in case #nal state is a resonance 
• ANC/SF also give information about radiative width 

ℓ

Γ

     reaction rateσσDC = ∑
lilf

SF(lf ) σDC
lilf

Γ → σRes

Indirect tool in Nuclear astrophysics:

For e.g. 13C(3He, d)14N    ANCs for 14N states   13C(p, γ)14N
PRC  62, 024320 (2000).

Similarly (6Li, d) and (7Li, t) were used for (*, +) and (*, n).  J. Phys. G: Nucl. Part. Phys. 
43 (2016) 043001 

Need of e"cient numerical techniques!!



R-matrix and Lagrange mesh methods 
R-matrix method

a0 r

Internal External

χext(r) = Cl [Il(kr) − Ul Ol(kr)]χint(r) =
N

∑
j=1

cj ϕj(r)

Descouvemont, Baye, Rep. Prog. Phys. 73 (2010) 036301

ℒ = ℏ2

2)
 *(+ − ,) -

-+

To make Hamiltonian as Hermitian over (0, a), use Bloch operator 

• Expansion in square-integrable basis is now possible. 
• Beyond making H+£ Hermitian, the Bloch operator enforces the continuity 

of the derivative of the wave function.

Channel radius is not a fitting parameter

(H + ℒ − E)χint = ℒχint = ℒχext
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D. Baye, Phy. Rep. 565 (2015) 1.



R-matrix and Lagrange mesh methods 
In the internal region the wave function is expanded over the Lagrange 
basis

Lagrange Condition Weight of the Gauss quadrature 
approximation associated 

• They are orthonormal basis, vanishes at all but one mesh point. 
• Gauss quadrature (GQ) associated with the mesh. N = basis size

.

∫
,

/(0)-0 ≈  
1

∑
2=1

32/(02)

ϕi(axj) = 1
aλj

δij

Choice of Lagrange functions depend upon the interval 

Matrix elements of the overlap 
and of the potential 

⟨ϕi |ϕj⟩ = δij

⟨ϕi |V |ϕj⟩ = V(axi)δij

Large channel radius need large number of basis !! 7

D. Baye, Phy. Rep. 565 (2015) 1.
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FIG. 4. 16O(d, p)17O transfer cross section to the 1/2+ state at
Ed = 25.4 MeV for various channel radii.

functions is fixed at a conservative value N = 80. From the
figure, we conclude that, as soon as the channel radius is
a ! 15 fm, the convergence is achieved. Similar conclusions
are drawn at other energies.

In Fig. 5, we select the scattering angle θ = 2◦, and plot
the cross section for various a and N . In Fig. 5(a), we
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FIG. 5. 16O(d, p)17O transfer cross section at Ed = 25.4 MeV
and θ = 2◦ as a function of the number of basis functions N (a) and
of the channel radius (b).

consider the variation of the cross section with the number
of basis functions N . Values around N ≈ 40 are sufficient to
achieve an excellent convergence. These numbers are much
smaller than those use in finite-difference methods, such as the
Numerov algorithm (several hundreds with a typical mesh size
of 0.02 fm). As mentioned earlier, the R-matrix calculations
can be still speed up by using a propagation method [32]. This
tool is particularly efficient in coupled-channel calculations
involving many channels. Figure 5(b) confirms the previous
analysis: a channel radius larger than ∼15 fm is necessary
to ensure the convergence. Notice that the 17O(5/2+) trans-
fer cross section converges faster than the 17O(1/2+) cross
section, due to the larger binding energy of the 5/2+ state.

C. The 12C(7Li, t )16O reaction

In this subsection, we apply the formalism to the
12C(7Li, t )16O reaction, which involves the transfer of
an α particle. The 12C(7Li, t )16O reaction, as well as
12C(6Li, d )16O, have been used in many indirect measure-
ments of the 12C(α, γ )16O cross section (see Refs. [36,41] and
references therein). This reaction is crucial in stellar models,
since it determines the 12C and 16O abundances after helium
burning. As astrophysical energies are much lower than the
Coulomb barrier, the corresponding cross sections are too
small to be measured in the laboratory.

Although many direct measurements have been devoted to
the 12C(α, γ )16O reaction, the extrapolation down to stellar
energies (≈300 keV) remains uncertain (see Ref. [42] for a
recent review). Most fits of the available data are performed
within the phenomenological R-matrix theory, which involves
various parameters of 16O states. In particular, the reduced
α widths of bound states are proportional to the spectro-
scopic factors, which can be accessed by α transfer reactions.
Reactions such as 12C(7Li, t )16O therefore provide strong
constraints on the R-matrix fits.

We consider the α transfer leading to the 0+
2 (Ex = 6.05

MeV) and 2+
1 (Ex = 6.92 MeV) states of 16O. Measurements

are available for 7Li energies of 28 and 34 MeV [36]. The
transfer cross sections are presented in Fig. 6 (solid lines),
where we use the spectroscopic factors given in Ref. [36]
(0.13 for the 0+

2 state and 0.15 for the 2+
1 state). The present

cross sections are quite similar to the fits of Ref. [36], and
confirmed by FRESCO calculations (not shown).

To assess the influence of the remnant term in the DWBA
matrix element, we use two different t + 12C optical potentials
from Refs. [37,38]. These potentials provide similar elastic-
scattering cross sections, and the shape of the transfer cross
section also weakly depends on the core-core potential. The
amplitude, however, is affected by the presence of the remnant
term. This effect is more significant for the 0+

2 state, where
the amplitude is changed by about 30%. This means that
the spectroscopic factor should be increased by about 30%,
compared to the value deduced in Ref. [36].

We also want to address the influence of the α + 12C
potentials, associated with 16O bound states. Following
Refs. [36,41], the depths are chosen such that the number of
nodes n satisfies the condition 2n + $ = 8. This choice seems
natural if one considers pure α + 12C cluster states, where the

034611-7

Test cases 

Convergence of cross sections with channel radius and Number of basis
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consider the variation of the cross section with the number
of basis functions N . Values around N ≈ 40 are sufficient to
achieve an excellent convergence. These numbers are much
smaller than those use in finite-difference methods, such as the
Numerov algorithm (several hundreds with a typical mesh size
of 0.02 fm). As mentioned earlier, the R-matrix calculations
can be still speed up by using a propagation method [32]. This
tool is particularly efficient in coupled-channel calculations
involving many channels. Figure 5(b) confirms the previous
analysis: a channel radius larger than ∼15 fm is necessary
to ensure the convergence. Notice that the 17O(5/2+) trans-
fer cross section converges faster than the 17O(1/2+) cross
section, due to the larger binding energy of the 5/2+ state.

C. The 12C(7Li, t )16O reaction

In this subsection, we apply the formalism to the
12C(7Li, t )16O reaction, which involves the transfer of
an α particle. The 12C(7Li, t )16O reaction, as well as
12C(6Li, d )16O, have been used in many indirect measure-
ments of the 12C(α, γ )16O cross section (see Refs. [36,41] and
references therein). This reaction is crucial in stellar models,
since it determines the 12C and 16O abundances after helium
burning. As astrophysical energies are much lower than the
Coulomb barrier, the corresponding cross sections are too
small to be measured in the laboratory.

Although many direct measurements have been devoted to
the 12C(α, γ )16O reaction, the extrapolation down to stellar
energies (≈300 keV) remains uncertain (see Ref. [42] for a
recent review). Most fits of the available data are performed
within the phenomenological R-matrix theory, which involves
various parameters of 16O states. In particular, the reduced
α widths of bound states are proportional to the spectro-
scopic factors, which can be accessed by α transfer reactions.
Reactions such as 12C(7Li, t )16O therefore provide strong
constraints on the R-matrix fits.

We consider the α transfer leading to the 0+
2 (Ex = 6.05

MeV) and 2+
1 (Ex = 6.92 MeV) states of 16O. Measurements

are available for 7Li energies of 28 and 34 MeV [36]. The
transfer cross sections are presented in Fig. 6 (solid lines),
where we use the spectroscopic factors given in Ref. [36]
(0.13 for the 0+

2 state and 0.15 for the 2+
1 state). The present

cross sections are quite similar to the fits of Ref. [36], and
confirmed by FRESCO calculations (not shown).

To assess the influence of the remnant term in the DWBA
matrix element, we use two different t + 12C optical potentials
from Refs. [37,38]. These potentials provide similar elastic-
scattering cross sections, and the shape of the transfer cross
section also weakly depends on the core-core potential. The
amplitude, however, is affected by the presence of the remnant
term. This effect is more significant for the 0+

2 state, where
the amplitude is changed by about 30%. This means that
the spectroscopic factor should be increased by about 30%,
compared to the value deduced in Ref. [36].

We also want to address the influence of the α + 12C
potentials, associated with 16O bound states. Following
Refs. [36,41], the depths are chosen such that the number of
nodes n satisfies the condition 2n + $ = 8. This choice seems
natural if one considers pure α + 12C cluster states, where the
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N = 40

Shubhchintak, Descouvemont, Phys. Rev. C  100, 034611 (2019).

8N ~ 40 is su"cient, much lesser than other methods 
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TABLE II. Optical potential parameters defined by Eqs. (38)–(40), for the various channels involved in the reactions considered in this paper.

Elab Vr Rr ar Wv Rv av Ws Rs as Rc

Channel (MeV) (MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (fm) Ref.

d + 16O 25.4 94.79 2.65 0.84 8.58 3.96 0.57 3.28 [35]
36 92.84 2.59 0.80 8.84 3.55 0.697 3.28 [35]

p + 17Oa 25.4 50.30 2.94 0.73 9.60 1.27 0.68 3.34 [35]
36 46.70 2.94 0.73 1.40 3.26 0.68 7.50 3.26 0.68 3.34 [35]

p + 17O(0.87)a 25.4 50.70 2.94 0.73 9.80 3.26 0.68 3.34 [35]
36 47 2.94 0.73 1.15 3.26 0.68 7.70 3.26 0.68 3.34 [35]

7Li + 12C 28, 34 139.1 3.71 0.58 18.8 4.56 0.93 0 0 0 2.91 [36]

t + 16O 28, 34 170 2.87 0.723 20 4.03 0.8 0 0 0 3.12 [36]

t + 12C 28 170.451 2.41 0.73 13.85 2.85 1.16 19.00 2.40 0.84 3.26 [37]
34 185.796 2.41 0.73 13.255 2.85 1.16 15.13 2.40 0.84 3.26 [37]

t + 12C 28 138.48 2.29 0.72 2.49 3.11 0.80 11.22 1.36 0.80 2.98 [38]
34 134.41 2.31 0.792 2.76 3.11 0.80 10.92 1.36 0.80 2.98 [38]

aGaussian surface imaginary potential.

are consistent with those of Ref. [35]. In that reference,
the importance of breakup channels was discussed, which
resulted in the improvement of the calculated cross sections
at backward angles. Tests with the FRESCO code (dotted lines)
show an excellent agreement with the present calculation.

We further investigate the importance of the remnant term
in the 16O(d, p)17O reaction. In general, this approximation
greatly simplifies the calculations and is often used in the
literature. Going beyond this approximation, however, raises
the question of a core-core potential. In the present work, we
take the 16O + p optical potential from the global parametriza-
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FIG. 2. 16O(d, p)17O angular distributions for the ground (5/2+)
and first excited (1/2+) states of 17O at two deuteron energies.
Dashed and solid lines correspond to the calculations with and
without the inclusion of the remnant term in the potential. The dotted
lines correspond to the FRESCO calculations [5]. Experimental data
are taken from Ref. [35].

tion of Ref. [40]. Figure 2 shows that calculations performed
without (solid lines) and with (dashed lines) the remnant term
are similar, especially at forward angles. At large angles, the
difference may reach up to 30%.

In Fig. 3, we plot the coefficients (2J + 1)TJ as a function
of J at Ed = 25.4 MeV for the ground state as well as for
the first excited state of 17O. This quantity is relevant for
the calculation of the integrated cross sections. In agreement
with the cross sections of Fig. 2, the 5/2+ contribution is
larger. Figure 3 shows that partial waves J ! 10 have a small
contribution. The maxima are located at low J values (J ≈
4–8 for the ground state and J ≈ 2–5 for the excited state).

In Figs. 4 and 5, we analyze the sensitivity of the transfer
cross sections against variations of the R-matrix parameters:
the channel radius a and the number of basis functions N . The
channel radius must be large enough to guarantee that nuclear
effects are negligible. However, large values require large
bases, and therefore increase the computer times. As usual in
R-matrix calculations, a compromise must be adopted.

Figure 4 presents the 16O(d, p)17O cross section at Ed =
25.4 MeV, and for various channel radii. The number of basis
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FIG. 3. Coefficients TJ (17) for the 16O(d, p)17O reaction at Ed =
25.4 MeV as a function of J . The lines are guide to the eye.
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Fig. 2 Angular distributions of 16O(d, n)17F reaction for the ground
(5/2+) and first excited (1/2+) states of 17F at two deuteron energies.
Solid and dashed lines correspond to the calculations (using SFs = 1)
with and without the inclusion of the remnant term in the potential.
Experimental data are taken from Ref. [34]

(> 30◦) in both these calculations. For the neutron transfer to
the ground state (g.s.) of 17F, even at very forward angles this
difference is around 30%. Such a large difference can influ-
ence the SFs extracted in the DWBA analysis. In Table 3, I
give single particle SFs for the ground and the first excited
states of 17F, extracted at both these energies with and with-
out the remnant term in the interaction. SFs are extracted by
fitting the calculations to the experimental data up to the first
minimum (normal way to extract SFs in the DWBA anal-
ysis [31]) using chi-square minimization fitting procedure.
One can see that the inclusion of the remnant term in the
interaction can change the extracted SFs. This change in the
SFs is less than 10% for the excited state of 17F, whereas, it is
around 20−30% for the ground state. I would like to mention
here that, my goal in this paper is not to provide the optimal
SFs but it is to estimate the effects of remnant term (and of
the shallow potentials in the coming sections) on the SFs. As
discussed in Ref. [34], around 20 − 25% uncertainties are
expected in the extracted SFs, due to the ambiguities of the
optical potentials.

Now I analyze the sensitivity of the transfer cross section
against variations of the R-matrix parameters: the channel
radius R0 and the number of basis functions N . For this,
in Fig. 3, I plot the 16O(d, n)17F(1/2+) differential cross
section at Ed = 11 MeV and θ = 2◦ as a function of (a)
the number of basis functions N , for a fixed value of R0 =
35 fm and (b) of the channel radius R0, for a fixed value
of N = 80. As mentioned earlier, the channel radius has
to be large enough so that the nuclear interactions become
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Fig. 3 16O(d, n)17F(1/2+) transfer cross section at Ed = 11 MeV and
θ = 2◦ as a function of the number of basis functions N (a) and of the
channel radius (b)

negligible. However, large values require large bases, and
hence increase the computer times. Therefore, a compromise
must be adopted for the R-matrix calculations.

Note that, in principle, after the application of R-matrix
method, the integral in Eq. (10) should have two parts, the
internal from 0 to R0 and the external from R0 to ∞. How-
ever, in our approach we have consider R0 as large enough,
so that the latter part contribute negligibly small and it is
rejected while deriving Eq. (28). So therefore, the channel
radius in our approach is also serving as an upper limit of the
integral to ensure the convergence.

From Fig. 3a it is clear that N ≈ 40 are sufficient to
achieve a good convergence. In fact, these numbers are much
smaller than those required in finite-difference methods, such
as the Numerov algorithm where hundreds of points are
needed with typical mesh size of 0.02 fm. Figure 3b shows
that channel radii of around 25 fm and 35 fm are required to
achieve the convergence respectively for the ground and for
the first excited states of 17F. A large radius needed in case
of 1/2+ state is due to its loosely bound nature. In Fig. 4, the
angular distribution for the n transfer leading to the ground
state of 17F at Ed = 11 MeV is plotted as a function of R0
for a fixed value of number of basis functions, N = 80. This
also confirms the findings of Fig. 3b i.e. the convergence is
achieved for R0 ≈ 20 − 25 fm. Similar calculations were
performed in Ref. [22] for the 16O(d, p)16O reaction, where
R0 = 15 − 20 fm was found as large enough to achieve

123

Test cases (nucleon transfer) 
Shubhchintak, Descouvemont, Phys. Rev. C  100, 034611 (2019). Shubhchintak, Eur. Phys. J. A  57, 32 (2021).

Dashed lines: With remnant terms 
Solid lines: Without remnant terms 
Dotted lines: FRESCO 
Exp. data and potentials: NPA 218, 
249 (1974)

Dashed lines: Without remnant terms 
Solid lines: With remnant terms 
Exp. data and potentials: NPA 127, 567 
(1969)  
SF with Remnant: For g.s. change by 
20-30% for e.s. change by < 10%
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 12C(7Li, t)16O
• Case of * transfer 
• Has been used for many 

indirect measurements of 
12C(*, +)16O 

• 12C(*, +)16O is an important 
astrophysical reaction. 

• Cross sections below 300 
keV has uncertainties. 
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Fig. 4 16O(d, n)17F transfer cross section to the ground state of 17F at
Ed = 11 MeV for various channel radii

the convergence, which is also true for the 12C(7Li, t)16O
reaction.

3.2 The 12C(7Li, t)16O reaction

I now discuss the case of cluster transfer i.e. the 12C(7Li,
t)16O reaction, where an α cluster is transferred from the pro-
jectile 7Li to the C target. In the literature α transfer reactions
over the 12C such as (7Li, t) and (6Li, d), have been used in
many indirect measurements of the 12C(α, γ )16O cross sec-
tion (see for example [35,39]) which is an important astro-
physical reaction. Apart from determining the C/O abun-
dance ratio after the Helium burning stage, it also decides the
fate of the stars after their death through supernova explosion.

At stellar energies of interest (≈ 300) keV the cross sec-
tions of 12C(α, γ )16O reaction are too small to be measured
in the laboratory. Although many direct measurements have
been performed to study this reaction but the cross sections
down to 300 keV are still reliable on the extrapolation pro-
cedure and are uncertain (see for example [40]). Most fits of
the available data are performed within the phenomenologi-
cal R-matrix theory, which involves various parameters (such
as energies, widths etc.) of 16O states. It is well known that
the reduced α widths of bound states are proportional to the
SFs or to the ANCs and therefore, α transfer reactions such
as (7Li, t) and (6Li, d) provide an efficient way to determine
them.

I consider the α transfer leading to the 0+2 (Ex =
6.05 MeV) and 2+1 (Ex = 6.92 MeV) states of 16O at two
different energies of 7Li, which are taken as 28 and 34 MeV,
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ELi = 34 MeV

ELi = 28 MeV ELi = 34 MeV

Fig. 5 Angular distributions of 12C(7Li, t)16O reaction at two different
energies of 7Li. Dashed and solid line are calculations with and without
the remnant terms, respectively. Thin lines (solid as well as dashed)
correspond to the calculations when SFs are taken as 1, whereas thick
lines are calculations using α-SFs given in the Table 3. Experimental
data (solid dots) are taken from Ref. [35]. The hatched regions and upper
and lower limits, represent the uncertainties associated with the angular
range. For details see text

respectively. In order to reproduce the α separation ener-
gies, the depths of the potentials are adjusted (as given in
Table 1) considering that the number of nodes n satisfies the
condition 2n + # = 8, where # = 0 and 2 for the 0+2 and
2+1 states, respectively. Similar to the previous case, calcula-
tions are performed with and without the remnant terms in the
interaction. For this the t−12C potentials are adopted from
Ref. [36]. In Fig. 5, I plot the angular distributions of 12C(7Li,
t)16O reaction and compare them with the experimental data
of Ref. [35]. Dashed and solid lines in the figure represent
the calculations with and without the remnant terms, respec-
tively. Thin lines (solid as well as dashed) correspond to the
calculations when SFs are taken as 1, whereas the bands
(hatched regions, upper and lower limits) are calculations
using the extracted α-SFs given in the Table 3. These SFs are
extracted by normalizing the calculations to the data, using
the chi-square minimization fitting procedure. However, as
there is no clear minima in the data like in the previous case,
I fit the data in steps with an increment of 10◦ and extract
the SFs in each interval. This procedure we have adopted in
Ref. [23] where, the average of all these SFs obtained in dif-
ferent intervals gives the final SF of a given state. This also
brings additional uncertainties in the extracted SFs along with
the existing uncertainties due to the optical potentials, which
are around 46% and 33% (see Ref. [35]) for 0+2 and 2+1 states,
respectively. The extracted α SFs in Table 3 are nearly the

123

Shubhchintak, Eur. Phys. J. A  57, 32 (2021).

Data and potentials: Oulebsir, Hammache et al. PRC 85, 
035804 (2012). 
C + t potential: D. Y. Pang et al. PRC 91, 024611 (2015).
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Table 3 Single particle SFs for the ground and first excited states of 17F and α-SFs for the 0+2 and 2+1 states of 16O, extracted with and without the
remnant terms (RT) in Eq. (12)

Nucleus State Beam energy (MeV) SFs without RT SFs With RT

17F 5/2+ 7.73 0.99 1.17

11.0 0.63 0.81
17F 1/2+ 7.73 1.26 1.38

11.0 1.16 1.25
16O 0+2 28 0.14 ± 0.02 0.18 ± 0.04
16O 0+2 34 0.16 ± 0.02 0.24 ± 0.04
16O 2+1 28 0.16 ± 0.02 0.17 ± 0.02
16O 2+1 34 0.14 ± 0.02 0.16 ± 0.02

The SFs for the ground state of d and of 7Li are taken as 1. Uncertainties in the α-SFs of 16O arise due to the variations of the angular range for
the fits (see text)

same as those obtained in Ref. [35] where they were reported
as 0.13+0.07

−0.06 and 0.15± 0.05, respectively for the 0+2 and 2+1
state of 16O. With remnant terms in the interaction, SFs for
the 2+1 state slightly increase by around 6−14%, whereas for
the 0+2 state there is an increase of around 30 − 50% in their
values and this was also pointed out in Ref. [22]. Moreover,
in Ref. [22], we have also repeated our calculations with
another t−12C potentials from Ref. [41] and confirmed that
our results remain nearly same.

3.3 Post-prior equivalence

Next I discuss the post-prior form equivalence in the context
of examples considered here. In fact, post-prior equivalence
is well known and had been discussed in some textbooks,
see for example [31], where it is shown that in the DWBA,
the post and the prior forms give same results provided the
remnant terms are included in the interaction. Here I show
it explicitly by performing calculations with and without the
remnant terms.

In Fig. 6, I plot the angular distributions of (a) 16O(d, n)
17F(5/2+) at Ed = 11 MeV and of (b) 12C(7Li, t)16O(0+2 ) at
ELi = 28 MeV. Dashed and dot-dashed lines represent cal-
culations in the post and the prior forms, respectively without
the remnant terms in the interactions (12) and (13). Whereas,
solid and dotted lines represent calculations in the post and
prior forms, respectively including the remnant terms. One
can see that, both representations give almost same results
only when remnant terms are included in the interactions in
both these cases. Similar, results were obtained for the other
states and energies in both these reactions. Furthermore, in
Fig. 6a one can see that the post form calculations without
the remnant term (dashed line) are closer to the calculations
with the remnant term (solid and dotted lines) regarding the
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Fig. 6 Angular distribution of (a) 16O(d, n)17F(5/2+) at Ed =
11 MeV and of (b) 12C(7Li, t)16O(0+2 ) at ELi = 28 MeV in the DWBA
framework. Dashed and dot-dashed lines represent the calculations in
the post and prior forms, respectively without the remnant terms in the
interactions (12) and (13). Whereas, solid and dotted lines represent
the calculations in the post and prior forms, respectively including the
remnant terms

shape as well as the magnitude. This is again due to the simi-
lar magnitude of the n−16O and n−17F optical potentials and
somewhat justify the post form DWBA calculations without
the remnant terms in case of (d, p) and (d, n) reactions.

123

Shubhchintak, Eur. Phys. J. A  57, 32 (2021).

Post-form without remnant
Prior-form without remnant

Post-form with remnant

Prior-form with remnant

'post = Vac + Uat − UaB

'prior = Vct + Uat − UAt

Also justify the use of post form 
without remnant for the (d, p), 
(d, n) reactions.
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Table 1
Number of Pauli-forbidden states (n) in the dif-
ferent systems considered here.

System State ! n

n+16O 1/2+ 0 1
α + t 3/2− 1 1

α+12C 0+
2 0 4

α+12C 2+
1 2 3

Fig. 1. Radial bound-state wave functions of 17O(1/2+) and 16O(0+
2 ) obtained by 

solving the Schrödinger wave equation with the deep WS potentials (dashed lines) 
and with the SUSY potentials (solid lines). For details see the text.

our calculation, we use Eq. (5) to construct SUSY partner potentials 
V ! j

2 . The potentials V ! j
2 possess a 1/r2 singularity in the origin and 

are shallow in nature [28].
In Fig. 1, we plot the radial wave functions for the 17O(1/2+ , 

Ex = 0.86 MeV) and 16O(0+
2 , Ex = 6.05 MeV) bound states. Dashed 

and solid lines represent the wave functions obtained with the WS 
and with its SUSY partner, respectively. Even though these wave 
functions differ in the nuclear interior, the r.m.s radii are similar.

These two different combinations of bound state potentials and 
wave functions are then used to calculate the transfer cross sec-
tions. Note that when using SUSY potential in the matrix ele-
ment, one has to subtract the centrifugal term from it. This is 
because the SUSY potential obtained from Eq. (5) are ! dependent 
whereas the original matrix potentials are not. We first illustrate 
the 16O(d, p)17O reaction which is the simplest case in present 
context, with no forbidden bound state in the incident channel po-
tential. As there is no forbidden state in the potential used for the 
ground state (5/2+), we only consider the striping of a neutron 
leading to the first excited state (1/2+) of 17O (! = 0).

In Fig. 2, we plot the angular distribution for the 16O(d, p)17O 
(1/2+) reaction at two different deuteron energies (Ed = 25.4
and 36 MeV) and also compare it with the experimental data of 
Ref. [34]. Dashed and solid lines in both panels correspond to the 
calculations using a WS potential and its SUSY partner for the final 
bound state. Both calculations reproduce the shape of the data over 
a wide angular range (up to ≈ 60◦). However, there is a significant 

Fig. 2. Angular distributions of the 16O(d, p)17O(1/2+) reaction at two different 
deuteron energies. The dashed and solid lines correspond to the calculations (with 
SF = 1) using a WS and its SUSY partner for the 17O(1/2+), respectively. Experi-
mental data (solid dots) are taken from Ref. [34].

difference in their magnitudes at both energies. Even in the very 
forward angular range, where transfer reactions are considered as 
peripheral, both calculations do not give identical results, and the 
position of the first minima is somewhat different.

A direct influence of these differences is expected on the spec-
troscopic factors (SFs), which can be extracted by normalizing the 
calculations to the experimental data at forward angles. We there-
fore, use a chi-square minimization procedure to extract the SFs 
for the (1/2+) excited state of 17O in both these calculations. We 
fit the data only up to first minima, which is the general proce-
dure to extract the SFs [33,40]. In Table 2, we compare the SFs 
using both calculations. A decrease of around 20-30% in the SFs is 
observed when using SUSY potentials. The SUSY SFs are more con-
sistent with values derived from a microscopic cluster model [41]. 
Furthermore, as mentioned in Ref. [34], around 20% uncertainties 
can be expected in the individual SFs due to ambiguities of the 
optical potentials. Note that our goal here is not to provide the op-
timal SFs, but it is to study the sensitivity of the SFs to the bound 
state wave functions.

The differences between both approaches indicate a significant 
contribution from the nuclear interior. To check this point further, 
and following the technique of Ref. [30], we define a modified ker-
nel K Jπ

αβ (rmin, R, R ′) in Eq. (3) using a cutoff radius rmin over the 
internal coordinates of the projectile (rA ) or of the residual nu-
cleus (rB ). Consequently, we have K Jπ

αβ (rmin, R, R ′) = K Jπ
αβ (R, R ′) for 

rmin ≤ rA or rB and it is 0 for rmin > rA or rB . This in turn results 
into a modified scattering matrix Ũ (rmin), such that Ũ (0) = U and 
Ũ (∞) = 0. This technique permits to evaluate the role of short dis-
tances in the transfer cross section.

3

SUSY

Woods Saxon (WS)

WS

SUSY
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Table 1
Number of Pauli-forbidden states (n) in the dif-
ferent systems considered here.

System State ! n

n+16O 1/2+ 0 1
α + t 3/2− 1 1

α+12C 0+
2 0 4

α+12C 2+
1 2 3

Fig. 1. Radial bound-state wave functions of 17O(1/2+) and 16O(0+
2 ) obtained by 

solving the Schrödinger wave equation with the deep WS potentials (dashed lines) 
and with the SUSY potentials (solid lines). For details see the text.

our calculation, we use Eq. (5) to construct SUSY partner potentials 
V ! j

2 . The potentials V ! j
2 possess a 1/r2 singularity in the origin and 

are shallow in nature [28].
In Fig. 1, we plot the radial wave functions for the 17O(1/2+ , 

Ex = 0.86 MeV) and 16O(0+
2 , Ex = 6.05 MeV) bound states. Dashed 

and solid lines represent the wave functions obtained with the WS 
and with its SUSY partner, respectively. Even though these wave 
functions differ in the nuclear interior, the r.m.s radii are similar.

These two different combinations of bound state potentials and 
wave functions are then used to calculate the transfer cross sec-
tions. Note that when using SUSY potential in the matrix ele-
ment, one has to subtract the centrifugal term from it. This is 
because the SUSY potential obtained from Eq. (5) are ! dependent 
whereas the original matrix potentials are not. We first illustrate 
the 16O(d, p)17O reaction which is the simplest case in present 
context, with no forbidden bound state in the incident channel po-
tential. As there is no forbidden state in the potential used for the 
ground state (5/2+), we only consider the striping of a neutron 
leading to the first excited state (1/2+) of 17O (! = 0).

In Fig. 2, we plot the angular distribution for the 16O(d, p)17O 
(1/2+) reaction at two different deuteron energies (Ed = 25.4
and 36 MeV) and also compare it with the experimental data of 
Ref. [34]. Dashed and solid lines in both panels correspond to the 
calculations using a WS potential and its SUSY partner for the final 
bound state. Both calculations reproduce the shape of the data over 
a wide angular range (up to ≈ 60◦). However, there is a significant 

Fig. 2. Angular distributions of the 16O(d, p)17O(1/2+) reaction at two different 
deuteron energies. The dashed and solid lines correspond to the calculations (with 
SF = 1) using a WS and its SUSY partner for the 17O(1/2+), respectively. Experi-
mental data (solid dots) are taken from Ref. [34].

difference in their magnitudes at both energies. Even in the very 
forward angular range, where transfer reactions are considered as 
peripheral, both calculations do not give identical results, and the 
position of the first minima is somewhat different.

A direct influence of these differences is expected on the spec-
troscopic factors (SFs), which can be extracted by normalizing the 
calculations to the experimental data at forward angles. We there-
fore, use a chi-square minimization procedure to extract the SFs 
for the (1/2+) excited state of 17O in both these calculations. We 
fit the data only up to first minima, which is the general proce-
dure to extract the SFs [33,40]. In Table 2, we compare the SFs 
using both calculations. A decrease of around 20-30% in the SFs is 
observed when using SUSY potentials. The SUSY SFs are more con-
sistent with values derived from a microscopic cluster model [41]. 
Furthermore, as mentioned in Ref. [34], around 20% uncertainties 
can be expected in the individual SFs due to ambiguities of the 
optical potentials. Note that our goal here is not to provide the op-
timal SFs, but it is to study the sensitivity of the SFs to the bound 
state wave functions.

The differences between both approaches indicate a significant 
contribution from the nuclear interior. To check this point further, 
and following the technique of Ref. [30], we define a modified ker-
nel K Jπ

αβ (rmin, R, R ′) in Eq. (3) using a cutoff radius rmin over the 
internal coordinates of the projectile (rA ) or of the residual nu-
cleus (rB ). Consequently, we have K Jπ

αβ (rmin, R, R ′) = K Jπ
αβ (R, R ′) for 

rmin ≤ rA or rB and it is 0 for rmin > rA or rB . This in turn results 
into a modified scattering matrix Ũ (rmin), such that Ũ (0) = U and 
Ũ (∞) = 0. This technique permits to evaluate the role of short dis-
tances in the transfer cross section.
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Table 2
Single particle SFs for the 1/2+ excited state of 17O and α-SFs for the 0+

2 and 2+
1

states of 16O extracted using two different types of bound-state potentials. The SFs 
for the ground state of d and of 7Li are taken as 1. Uncertainties in the 16O SFs arise 
from different choices of the angular range for the fits (see text).

Nucleus State Beam energy 
(MeV)

SFs 
(WS)

SFs 
(SUSY)

17O 1/2+ 25.4 1.73 1.22
1/2+ 36.0 2.08 1.63

16O 0+
2 28 0.18 ± 0.04 0.19 ± 0.02

16O 0+
2 34 0.24 ± 0.04 0.25 ± 0.03

16O 2+
1 28 0.17 ± 0.02 0.15 ± 0.02

16O 2+
1 34 0.16 ± 0.02 0.14 ± 0.03

Fig. 3. Modified cross sections dσ̃ (rmin)/d#) for the reaction 16O(d, p)17O (1/2+) at 
Ed = 25.4 MeV, plotted at two different angles as a function of the cutoff distance 
rmin over the n+16O coordinate. Dashed and solid lines have the same meaning as 
in Fig. 2.

In Fig. 3, we plot the modified cross sections dσ̃ (rmin)/d# cal-
culated using Ũ (rmin), as a function of cutoff distance rmin over 
the n+16O coordinate. We plot these cross sections at two dif-
ferent scattering angles 2◦ and 50◦ for the deuteron energy 25.4 
MeV. Dashed and solid lines are the same as in Fig. 2. One can 
see that there is a significant difference in both these calcula-
tions for 0 ≤ rmin ≤ 3.6 fm and this is the region where the wave 
functions from both these potentials [see Fig. 1(a)] used for 17O 
differ from each other. This clearly explains the differences be-
tween both calculations in Fig. 2. It is also clear from Fig. 3 that 
this difference increases at large angles. Similar conclusions are 
drawn at Ed = 36 MeV. We also repeated our calculations be-
low the Coulomb barrier (V C = 2.54 MeV) using global deuteron 
and proton optical potentials from Refs. [42,43] and found that for 
deuteron energies well below the barrier SUSY transformations has 
negligible effect. This suggests that the process is completely pe-
ripheral for energies below the barrier. However, for energies far 
above the barrier, differences start appearing between these two 
calculations especially at larger angles, which further increase with 
the energies.

Next, we discuss the 12C(7Li, t)16O reaction, and consider 
α transfer leading to the 0+

2 (Ex = 6.05 MeV) and 2+
1 (Ex =

6.92 MeV) states of 16O. In the literature, the 12C(7Li, t)16O re-
action has been used in indirect measurements of 12C(α, γ )16O 
[35,44], which is very important in nuclear astrophysics. At typ-
ical stellar energies, around 300 keV, the cross section estimates 
rely on extrapolation procedures, due to the difficulties in the di-

Fig. 4. Angular distributions of 12C(7Li, t)16O at two 7Li energies. Dashed and solid 
lines represent calculations using WS and SUSY bound-state potentials in both chan-
nels, respectively. Experimental data are taken from Ref. [35]. Spectroscopic factors 
are given in Table 2. The upper and lower limits, and the hatched regions, represent 
the uncertainties associated with the angular range (see text).

rect measurements [45]. In this procedure, the phenomenological 
R-matrix method is often adopted for fits to the various available 
data, and this also requires spectroscopic information about the 
various states of 16O. It is well known that the reduced α width 
of a bound state mainly depends upon its spectroscopic factor, and 
that α transfer reactions such as (7Li, t) or (6Li, d) provide an effi-
cient way to determine them.

We study the 12C(7Li, t)16O reaction at two 7Li energies (28 and 
34 MeV). As given in Table 1, there are forbidden states both in the 
α + t and in the α+12C potentials. In Fig. 4, we plot the 12C(7Li, 
t)16O angular distribution at 28 and 34 MeV for both 16O states. 
Dashed and solid lines are calculations with the WS and SUSY po-
tentials in both channels, respectively and they are fitted to the 
experimental data of Ref. [35]. As there is no clear minima in the 
data unlike the previous case, to extract the SFs we fit all the avail-
able data points. We fit the data in steps with an increment of 10◦

and extract respective SFs in each interval. The final SF for a given 
state is then obtained by taking the average of the SFs obtained 
from different intervals. In Fig. 4 the upper and lower limits for 
the solid lines, and the hatched regions for the dashed lines, rep-
resent the uncertainties associated with the angular range. These 
α−SFs are presented in Table 2. Additionally, around 46% and 33% 
uncertainties are also expected in the extracted SFs of 0+

2 and 2+
1

states, respectively, due to the ambiguities in the optical potentials 
and due to variation of the bound state potential parameters as 
mentioned in Ref. [35].

The SFs with deep potentials are somewhat larger than those 
obtained in Ref. [35], where they were reported as 0.13+0.07

−0.06 and 
0.15 ± 0.05, respectively. This is due to the inclusion of remnant 
terms in our case, as it was also pointed out in Ref. [30]. These 
SFs remain almost unaltered when we replace the WS potentials 
by their SUSY partners in both channels. However, the shapes of 
the angular distributions (see Fig. 4) are changed significantly, es-
pecially for the 0+

2 state. To trace its origin, we analyze the cross 
sections as a function of the cutoff distance rmin over the α − t and 
α − C distances.

In Fig. 5, we plot the modified cross section dσ̃ (rmin)/d#) at 
θ = 2◦ and 12◦ for the reaction 12C(7Li, t)16O (0+

2 ) at E7 Li =

4

Shubhchintak, Descouvemont, Phys. Letts. B  811, 135874 (2020).
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Dashed lines: With WS 
Solid lines: With SUSY
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14

Shubhchintak and P. Descouvemont Physics Letters B 811 (2020) 135874

Table 2
Single particle SFs for the 1/2+ excited state of 17O and α-SFs for the 0+

2 and 2+
1

states of 16O extracted using two different types of bound-state potentials. The SFs 
for the ground state of d and of 7Li are taken as 1. Uncertainties in the 16O SFs arise 
from different choices of the angular range for the fits (see text).

Nucleus State Beam energy 
(MeV)

SFs 
(WS)

SFs 
(SUSY)

17O 1/2+ 25.4 1.73 1.22
1/2+ 36.0 2.08 1.63

16O 0+
2 28 0.18 ± 0.04 0.19 ± 0.02

16O 0+
2 34 0.24 ± 0.04 0.25 ± 0.03

16O 2+
1 28 0.17 ± 0.02 0.15 ± 0.02

16O 2+
1 34 0.16 ± 0.02 0.14 ± 0.03

Fig. 3. Modified cross sections dσ̃ (rmin)/d#) for the reaction 16O(d, p)17O (1/2+) at 
Ed = 25.4 MeV, plotted at two different angles as a function of the cutoff distance 
rmin over the n+16O coordinate. Dashed and solid lines have the same meaning as 
in Fig. 2.

In Fig. 3, we plot the modified cross sections dσ̃ (rmin)/d# cal-
culated using Ũ (rmin), as a function of cutoff distance rmin over 
the n+16O coordinate. We plot these cross sections at two dif-
ferent scattering angles 2◦ and 50◦ for the deuteron energy 25.4 
MeV. Dashed and solid lines are the same as in Fig. 2. One can 
see that there is a significant difference in both these calcula-
tions for 0 ≤ rmin ≤ 3.6 fm and this is the region where the wave 
functions from both these potentials [see Fig. 1(a)] used for 17O 
differ from each other. This clearly explains the differences be-
tween both calculations in Fig. 2. It is also clear from Fig. 3 that 
this difference increases at large angles. Similar conclusions are 
drawn at Ed = 36 MeV. We also repeated our calculations be-
low the Coulomb barrier (V C = 2.54 MeV) using global deuteron 
and proton optical potentials from Refs. [42,43] and found that for 
deuteron energies well below the barrier SUSY transformations has 
negligible effect. This suggests that the process is completely pe-
ripheral for energies below the barrier. However, for energies far 
above the barrier, differences start appearing between these two 
calculations especially at larger angles, which further increase with 
the energies.

Next, we discuss the 12C(7Li, t)16O reaction, and consider 
α transfer leading to the 0+

2 (Ex = 6.05 MeV) and 2+
1 (Ex =

6.92 MeV) states of 16O. In the literature, the 12C(7Li, t)16O re-
action has been used in indirect measurements of 12C(α, γ )16O 
[35,44], which is very important in nuclear astrophysics. At typ-
ical stellar energies, around 300 keV, the cross section estimates 
rely on extrapolation procedures, due to the difficulties in the di-

Fig. 4. Angular distributions of 12C(7Li, t)16O at two 7Li energies. Dashed and solid 
lines represent calculations using WS and SUSY bound-state potentials in both chan-
nels, respectively. Experimental data are taken from Ref. [35]. Spectroscopic factors 
are given in Table 2. The upper and lower limits, and the hatched regions, represent 
the uncertainties associated with the angular range (see text).

rect measurements [45]. In this procedure, the phenomenological 
R-matrix method is often adopted for fits to the various available 
data, and this also requires spectroscopic information about the 
various states of 16O. It is well known that the reduced α width 
of a bound state mainly depends upon its spectroscopic factor, and 
that α transfer reactions such as (7Li, t) or (6Li, d) provide an effi-
cient way to determine them.

We study the 12C(7Li, t)16O reaction at two 7Li energies (28 and 
34 MeV). As given in Table 1, there are forbidden states both in the 
α + t and in the α+12C potentials. In Fig. 4, we plot the 12C(7Li, 
t)16O angular distribution at 28 and 34 MeV for both 16O states. 
Dashed and solid lines are calculations with the WS and SUSY po-
tentials in both channels, respectively and they are fitted to the 
experimental data of Ref. [35]. As there is no clear minima in the 
data unlike the previous case, to extract the SFs we fit all the avail-
able data points. We fit the data in steps with an increment of 10◦

and extract respective SFs in each interval. The final SF for a given 
state is then obtained by taking the average of the SFs obtained 
from different intervals. In Fig. 4 the upper and lower limits for 
the solid lines, and the hatched regions for the dashed lines, rep-
resent the uncertainties associated with the angular range. These 
α−SFs are presented in Table 2. Additionally, around 46% and 33% 
uncertainties are also expected in the extracted SFs of 0+

2 and 2+
1

states, respectively, due to the ambiguities in the optical potentials 
and due to variation of the bound state potential parameters as 
mentioned in Ref. [35].

The SFs with deep potentials are somewhat larger than those 
obtained in Ref. [35], where they were reported as 0.13+0.07

−0.06 and 
0.15 ± 0.05, respectively. This is due to the inclusion of remnant 
terms in our case, as it was also pointed out in Ref. [30]. These 
SFs remain almost unaltered when we replace the WS potentials 
by their SUSY partners in both channels. However, the shapes of 
the angular distributions (see Fig. 4) are changed significantly, es-
pecially for the 0+

2 state. To trace its origin, we analyze the cross 
sections as a function of the cutoff distance rmin over the α − t and 
α − C distances.

In Fig. 5, we plot the modified cross section dσ̃ (rmin)/d#) at 
θ = 2◦ and 12◦ for the reaction 12C(7Li, t)16O (0+

2 ) at E7 Li =

4
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Fig. 5. Modified cross sections dσ̃ (rmin)/d") for the reaction 12C(7Li, t)16O (0+
2 ) at 

E7 Li = 28 MeV, plotted at two different angles, as a function of cutoff distance rmin

over (a) α+12C and (b) α + t coordinates. The dashed lines have the same meaning 
as in Fig. 4 but with SFs = 1. The solid lines represent the calculations using a SUSY 
potential only for α+12C (a) or for α + t (b).

28 MeV, as a function of cutoff distance rmin over the α+12C (up-
per panel) and α + t (lower panel) coordinates. Dashed lines in the 
figure correspond to the calculations when using WS bound state 
potentials in both the channels, whereas solid lines are the cal-
culations when using SUSY potential only for the (a) 16O or for 
the (b) 7Li nucleus. It is clear from the figure that cross sections 
are sensitive to the larger α+12C distances as compared to the 
α + t distances. Furthermore, at very forward angles cross sections 
are equally sensitive to both these coordinates but at larger an-
gles where shapes of angular distribution are mostly effected, cross 
sections are mainly governed by the α+12C distances [see around 
(rmin ≈ 0)]. A similar behavior was found at 34 MeV, and for the 
2+

1 state of 16O. As we did in the previous case, here also we re-
peated our calculations at lower projectile energies and found that 
below the Coulomb barrier (V C = 5.1 MeV) the process is com-
pletely peripheral in this case too with respect to both the α + t
and α+12C distances, whereas as one goes somewhat above the 
barrier nuclear interior start contributing.

In conclusion, we have addressed the sensitivity of the DWBA 
cross sections against two models of bound-state wave functions. 
Starting from deep WS potentials, we have built equivalent super-
symmetric partners. The asymptotic part of the wave function is 
identical, but there are differences in the internal part. The com-
parison of these calculations allows us to test the sensitivity of 
transfer cross sections to the nuclear interior. We have applied the 
model to 16O(d, p)17O and 12C(7Li, t)16O, typical cases of nucleon 
and α transfer, respectively. We found a significant contribution 
from the nuclear interior for energies > 15 − 20 MeV. Apart from 
the magnitude, the shape of the angular distributions is also ef-
fected. For the 16O(d, p)17O reaction, the SFs are reduced by about 
30% when using SUSY potentials. For the 12C(7Li, t)16O reaction, 
however, the main difference between both potentials is in the 
shape of the angular distribution. We have considered various lim-

its for the angular ranges where the theory is compared to exper-
iment. This provides additional uncertainties of 10 − 20% in the 
spectroscopic factors apart from those due the ambiguities in the 
optical potentials.
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Table 2
Single particle SFs for the 1/2+ excited state of 17O and α-SFs for the 0+

2 and 2+
1

states of 16O extracted using two different types of bound-state potentials. The SFs 
for the ground state of d and of 7Li are taken as 1. Uncertainties in the 16O SFs arise 
from different choices of the angular range for the fits (see text).

Nucleus State Beam energy 
(MeV)

SFs 
(WS)

SFs 
(SUSY)

17O 1/2+ 25.4 1.73 1.22
1/2+ 36.0 2.08 1.63

16O 0+
2 28 0.18 ± 0.04 0.19 ± 0.02

16O 0+
2 34 0.24 ± 0.04 0.25 ± 0.03

16O 2+
1 28 0.17 ± 0.02 0.15 ± 0.02

16O 2+
1 34 0.16 ± 0.02 0.14 ± 0.03

Fig. 3. Modified cross sections dσ̃ (rmin)/d#) for the reaction 16O(d, p)17O (1/2+) at 
Ed = 25.4 MeV, plotted at two different angles as a function of the cutoff distance 
rmin over the n+16O coordinate. Dashed and solid lines have the same meaning as 
in Fig. 2.

In Fig. 3, we plot the modified cross sections dσ̃ (rmin)/d# cal-
culated using Ũ (rmin), as a function of cutoff distance rmin over 
the n+16O coordinate. We plot these cross sections at two dif-
ferent scattering angles 2◦ and 50◦ for the deuteron energy 25.4 
MeV. Dashed and solid lines are the same as in Fig. 2. One can 
see that there is a significant difference in both these calcula-
tions for 0 ≤ rmin ≤ 3.6 fm and this is the region where the wave 
functions from both these potentials [see Fig. 1(a)] used for 17O 
differ from each other. This clearly explains the differences be-
tween both calculations in Fig. 2. It is also clear from Fig. 3 that 
this difference increases at large angles. Similar conclusions are 
drawn at Ed = 36 MeV. We also repeated our calculations be-
low the Coulomb barrier (V C = 2.54 MeV) using global deuteron 
and proton optical potentials from Refs. [42,43] and found that for 
deuteron energies well below the barrier SUSY transformations has 
negligible effect. This suggests that the process is completely pe-
ripheral for energies below the barrier. However, for energies far 
above the barrier, differences start appearing between these two 
calculations especially at larger angles, which further increase with 
the energies.

Next, we discuss the 12C(7Li, t)16O reaction, and consider 
α transfer leading to the 0+

2 (Ex = 6.05 MeV) and 2+
1 (Ex =

6.92 MeV) states of 16O. In the literature, the 12C(7Li, t)16O re-
action has been used in indirect measurements of 12C(α, γ )16O 
[35,44], which is very important in nuclear astrophysics. At typ-
ical stellar energies, around 300 keV, the cross section estimates 
rely on extrapolation procedures, due to the difficulties in the di-

Fig. 4. Angular distributions of 12C(7Li, t)16O at two 7Li energies. Dashed and solid 
lines represent calculations using WS and SUSY bound-state potentials in both chan-
nels, respectively. Experimental data are taken from Ref. [35]. Spectroscopic factors 
are given in Table 2. The upper and lower limits, and the hatched regions, represent 
the uncertainties associated with the angular range (see text).

rect measurements [45]. In this procedure, the phenomenological 
R-matrix method is often adopted for fits to the various available 
data, and this also requires spectroscopic information about the 
various states of 16O. It is well known that the reduced α width 
of a bound state mainly depends upon its spectroscopic factor, and 
that α transfer reactions such as (7Li, t) or (6Li, d) provide an effi-
cient way to determine them.

We study the 12C(7Li, t)16O reaction at two 7Li energies (28 and 
34 MeV). As given in Table 1, there are forbidden states both in the 
α + t and in the α+12C potentials. In Fig. 4, we plot the 12C(7Li, 
t)16O angular distribution at 28 and 34 MeV for both 16O states. 
Dashed and solid lines are calculations with the WS and SUSY po-
tentials in both channels, respectively and they are fitted to the 
experimental data of Ref. [35]. As there is no clear minima in the 
data unlike the previous case, to extract the SFs we fit all the avail-
able data points. We fit the data in steps with an increment of 10◦

and extract respective SFs in each interval. The final SF for a given 
state is then obtained by taking the average of the SFs obtained 
from different intervals. In Fig. 4 the upper and lower limits for 
the solid lines, and the hatched regions for the dashed lines, rep-
resent the uncertainties associated with the angular range. These 
α−SFs are presented in Table 2. Additionally, around 46% and 33% 
uncertainties are also expected in the extracted SFs of 0+

2 and 2+
1

states, respectively, due to the ambiguities in the optical potentials 
and due to variation of the bound state potential parameters as 
mentioned in Ref. [35].

The SFs with deep potentials are somewhat larger than those 
obtained in Ref. [35], where they were reported as 0.13+0.07

−0.06 and 
0.15 ± 0.05, respectively. This is due to the inclusion of remnant 
terms in our case, as it was also pointed out in Ref. [30]. These 
SFs remain almost unaltered when we replace the WS potentials 
by their SUSY partners in both channels. However, the shapes of 
the angular distributions (see Fig. 4) are changed significantly, es-
pecially for the 0+

2 state. To trace its origin, we analyze the cross 
sections as a function of the cutoff distance rmin over the α − t and 
α − C distances.

In Fig. 5, we plot the modified cross section dσ̃ (rmin)/d#) at 
θ = 2◦ and 12◦ for the reaction 12C(7Li, t)16O (0+

2 ) at E7 Li =

4
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Similar tests with the cuto!  
f o r t h e P e r i p h e r a l i t y . 
Important for ANC extraction
Shubhchintak, Descouvemont, Phys. Rev. C  
100, 034611 (2019).



ANC & radiative capture
For the peripheral 
radiative capture reactions

σ  ∝  (ANC)2

For     B   →   A + a 

Radial overlap 
function

For rAa >> Rn

ANC

The overlap function (I)

Ilsj(rAa) = ⟨ϕAϕa |ϕB⟩ = angular part × Ilsj(rAa)

Ilsj(rAa) = Clsj W−η,l+ 1
2
(2κrAa)/rAa

M = ⟨ϕB | Ô(rAa) |ϕAϕaψ+
i (rAa)⟩ = ⟨IB(Aa)(rAa) | Ô(rAa) |ψ+

i (rAa)⟩

σ  ∝ |M|2 

      ∝ (ANC)2
15



S is the spectroscopic factor of the final bound state. 

The tail of the bound state wave 
function:

b is the single particle ANC and it depends 
upon potential.

C = S1/2 b  

For rAa > Rn

Two body Potential model

Ilsj(rAa) = Slsj ϕlsj(rAa)

ϕlsj(rAa) ≈ blsj Wη,l+ 1
2
(2κrAa)/rAa
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ANC of a + A → B

Using  transfer reaction A(x,y)B

ANC from transfer measurement 

dσ
dΩ = (SB

AalB jB)(S
x
yalx jx) ( dσ

dΩ )
DWBA

dσ
dΩ = (CB

AalB jB)
2(Cx

yalx jx)
2 (dσ/dΩ)DWBA

b2
AalB jB b2

yalx jx
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First Lithium Puzzle

Isotopic ratio of 6Li/ 7Li,        
  BBN:         6Li/ 7Li  ~10-5

                J. Cosm. Astrophys. 10, 050 (2014). 

  Observed:  6Li/ 7Li  ~5 x 10-2           APJ 644, 229 (2006).

Second Lithium Puzzle

Abundace of 7Li 
BBN:        7Li/H = (4.56-5.34) x 10-10  J. Cosm. Astrophys. 10, 050 (2014) 

Observed: 7Li/H =  x 10-10   Astron. Astrophys. 522, A26 (2010)1.58+0.35
−0.28

First successful Experiment by LUNA at two Big Bang energies 94 and 
134 keV M. Anders et al., PRL. 113, 042501 (2014).

Lithium problems

α+d → 6Li + γ   Reaction 

Hartos, Bertulani, Shubhchintak, Mukhamedzhanov, Hou, Astrophys. J  862, 62 (2018). 

Lithium Problems
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Photon’s angular distribution 

Dipole (E1)

Quadrupole (E2)

Total with Interference

70 
keV

100 
keV

200 
keV

400 
keV

Mukhamedzhanov, Shubhchintak, Bertulani, Phys. Rev. C  93, 045805 (2016).

ANC C = 2.32 ± 0.12 fm-1/2

Phys. Rev. C 48, 2390 (1993)

Red lines : Method 1 (Fix ANC by using Spectroscopic factor) 
Green lines : Method 2 (Fix ANC from the phase equivalent potential)
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Photon’s angular distribution in d(*, +)6Li



E <100 keV, E1 dominates and at higher energies E2 dominates.

E1

E2

E1+E2

Blue Square boxes, LUNA: 
  PRL 113, 042501 (2014).

 (1.5 ± 0.3) x 10-5

Observed in nine stars is 
~5x10-2

                                                                       
APJ 644, 229 (2006).

6Li/7Li:

BBN: Wagoner, Ap. J. Suppl. Ser. 18, 247 (1969). 
Kawano, NASA Technical Reports Server (NTRS): 
Hampton, VA, USA, 1992.

Mukhamedzhanov, Shubhchintak, Bertulani, Phys. Rev. C  93, 045805 (2016).

 ;(<) = < =2>?@(<)
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Astrophysical S-factor of d(*, +)6Li

Abundance:

Black dots: J. Kiener et al. PRC 44, 2195 (1991)
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Summary 
•Importance of transfer for astrophysics: 

SF, ANC, 4 … 

•Utility of R-matrix and Lagrange mesh 
methods to transfer reactions in DWBA 

•16O(d, p)17O, 16O(d, n)17F, 12C(7Li, t)16O 

•Effects of remnant terms, post-prior 
equivalence in DWBA 

•Sensitivity of transfer cross sections to 
bound state wave functions using 
shallow and deep potentials.  

•Application of ANC to d(*, +)6Li in 
context of 2nd Li problem

TRANSFER REACTIONS WITH THE LAGRANGE-MESH … PHYSICAL REVIEW C 100, 034611 (2019)
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16O(d, p)17O(1/2+)
Ed = 25.4 MeV

FIG. 4. 16O(d, p)17O transfer cross section to the 1/2+ state at
Ed = 25.4 MeV for various channel radii.

functions is fixed at a conservative value N = 80. From the
figure, we conclude that, as soon as the channel radius is
a ! 15 fm, the convergence is achieved. Similar conclusions
are drawn at other energies.

In Fig. 5, we select the scattering angle θ = 2◦, and plot
the cross section for various a and N . In Fig. 5(a), we

0 10 20 30 40 50 60
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17O (5/2+)
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(b)

FIG. 5. 16O(d, p)17O transfer cross section at Ed = 25.4 MeV
and θ = 2◦ as a function of the number of basis functions N (a) and
of the channel radius (b).

consider the variation of the cross section with the number
of basis functions N . Values around N ≈ 40 are sufficient to
achieve an excellent convergence. These numbers are much
smaller than those use in finite-difference methods, such as the
Numerov algorithm (several hundreds with a typical mesh size
of 0.02 fm). As mentioned earlier, the R-matrix calculations
can be still speed up by using a propagation method [32]. This
tool is particularly efficient in coupled-channel calculations
involving many channels. Figure 5(b) confirms the previous
analysis: a channel radius larger than ∼15 fm is necessary
to ensure the convergence. Notice that the 17O(5/2+) trans-
fer cross section converges faster than the 17O(1/2+) cross
section, due to the larger binding energy of the 5/2+ state.

C. The 12C(7Li, t )16O reaction

In this subsection, we apply the formalism to the
12C(7Li, t )16O reaction, which involves the transfer of
an α particle. The 12C(7Li, t )16O reaction, as well as
12C(6Li, d )16O, have been used in many indirect measure-
ments of the 12C(α, γ )16O cross section (see Refs. [36,41] and
references therein). This reaction is crucial in stellar models,
since it determines the 12C and 16O abundances after helium
burning. As astrophysical energies are much lower than the
Coulomb barrier, the corresponding cross sections are too
small to be measured in the laboratory.

Although many direct measurements have been devoted to
the 12C(α, γ )16O reaction, the extrapolation down to stellar
energies (≈300 keV) remains uncertain (see Ref. [42] for a
recent review). Most fits of the available data are performed
within the phenomenological R-matrix theory, which involves
various parameters of 16O states. In particular, the reduced
α widths of bound states are proportional to the spectro-
scopic factors, which can be accessed by α transfer reactions.
Reactions such as 12C(7Li, t )16O therefore provide strong
constraints on the R-matrix fits.

We consider the α transfer leading to the 0+
2 (Ex = 6.05

MeV) and 2+
1 (Ex = 6.92 MeV) states of 16O. Measurements

are available for 7Li energies of 28 and 34 MeV [36]. The
transfer cross sections are presented in Fig. 6 (solid lines),
where we use the spectroscopic factors given in Ref. [36]
(0.13 for the 0+

2 state and 0.15 for the 2+
1 state). The present

cross sections are quite similar to the fits of Ref. [36], and
confirmed by FRESCO calculations (not shown).

To assess the influence of the remnant term in the DWBA
matrix element, we use two different t + 12C optical potentials
from Refs. [37,38]. These potentials provide similar elastic-
scattering cross sections, and the shape of the transfer cross
section also weakly depends on the core-core potential. The
amplitude, however, is affected by the presence of the remnant
term. This effect is more significant for the 0+

2 state, where
the amplitude is changed by about 30%. This means that
the spectroscopic factor should be increased by about 30%,
compared to the value deduced in Ref. [36].

We also want to address the influence of the α + 12C
potentials, associated with 16O bound states. Following
Refs. [36,41], the depths are chosen such that the number of
nodes n satisfies the condition 2n + $ = 8. This choice seems
natural if one considers pure α + 12C cluster states, where the
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Table 3 Single particle SFs for the ground and first excited states of 17F and α-SFs for the 0+2 and 2+1 states of 16O, extracted with and without the
remnant terms (RT) in Eq. (12)

Nucleus State Beam energy (MeV) SFs without RT SFs With RT

17F 5/2+ 7.73 0.99 1.17

11.0 0.63 0.81
17F 1/2+ 7.73 1.26 1.38

11.0 1.16 1.25
16O 0+2 28 0.14 ± 0.02 0.18 ± 0.04
16O 0+2 34 0.16 ± 0.02 0.24 ± 0.04
16O 2+1 28 0.16 ± 0.02 0.17 ± 0.02
16O 2+1 34 0.14 ± 0.02 0.16 ± 0.02

The SFs for the ground state of d and of 7Li are taken as 1. Uncertainties in the α-SFs of 16O arise due to the variations of the angular range for
the fits (see text)

same as those obtained in Ref. [35] where they were reported
as 0.13+0.07

−0.06 and 0.15± 0.05, respectively for the 0+2 and 2+1
state of 16O. With remnant terms in the interaction, SFs for
the 2+1 state slightly increase by around 6−14%, whereas for
the 0+2 state there is an increase of around 30 − 50% in their
values and this was also pointed out in Ref. [22]. Moreover,
in Ref. [22], we have also repeated our calculations with
another t−12C potentials from Ref. [41] and confirmed that
our results remain nearly same.

3.3 Post-prior equivalence

Next I discuss the post-prior form equivalence in the context
of examples considered here. In fact, post-prior equivalence
is well known and had been discussed in some textbooks,
see for example [31], where it is shown that in the DWBA,
the post and the prior forms give same results provided the
remnant terms are included in the interaction. Here I show
it explicitly by performing calculations with and without the
remnant terms.

In Fig. 6, I plot the angular distributions of (a) 16O(d, n)
17F(5/2+) at Ed = 11 MeV and of (b) 12C(7Li, t)16O(0+2 ) at
ELi = 28 MeV. Dashed and dot-dashed lines represent cal-
culations in the post and the prior forms, respectively without
the remnant terms in the interactions (12) and (13). Whereas,
solid and dotted lines represent calculations in the post and
prior forms, respectively including the remnant terms. One
can see that, both representations give almost same results
only when remnant terms are included in the interactions in
both these cases. Similar, results were obtained for the other
states and energies in both these reactions. Furthermore, in
Fig. 6a one can see that the post form calculations without
the remnant term (dashed line) are closer to the calculations
with the remnant term (solid and dotted lines) regarding the
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(a)

12C(7Li, t)16O(02
+)

ELi = 28 MeV

(b)

16O(d, n)17F(5/2+)

Ed = 11 MeV

Fig. 6 Angular distribution of (a) 16O(d, n)17F(5/2+) at Ed =
11 MeV and of (b) 12C(7Li, t)16O(0+2 ) at ELi = 28 MeV in the DWBA
framework. Dashed and dot-dashed lines represent the calculations in
the post and prior forms, respectively without the remnant terms in the
interactions (12) and (13). Whereas, solid and dotted lines represent
the calculations in the post and prior forms, respectively including the
remnant terms

shape as well as the magnitude. This is again due to the simi-
lar magnitude of the n−16O and n−17F optical potentials and
somewhat justify the post form DWBA calculations without
the remnant terms in case of (d, p) and (d, n) reactions.
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Fig. 2 Angular distributions of 16O(d, n)17F reaction for the ground
(5/2+) and first excited (1/2+) states of 17F at two deuteron energies.
Solid and dashed lines correspond to the calculations (using SFs = 1)
with and without the inclusion of the remnant term in the potential.
Experimental data are taken from Ref. [34]

(> 30◦) in both these calculations. For the neutron transfer to
the ground state (g.s.) of 17F, even at very forward angles this
difference is around 30%. Such a large difference can influ-
ence the SFs extracted in the DWBA analysis. In Table 3, I
give single particle SFs for the ground and the first excited
states of 17F, extracted at both these energies with and with-
out the remnant term in the interaction. SFs are extracted by
fitting the calculations to the experimental data up to the first
minimum (normal way to extract SFs in the DWBA anal-
ysis [31]) using chi-square minimization fitting procedure.
One can see that the inclusion of the remnant term in the
interaction can change the extracted SFs. This change in the
SFs is less than 10% for the excited state of 17F, whereas, it is
around 20−30% for the ground state. I would like to mention
here that, my goal in this paper is not to provide the optimal
SFs but it is to estimate the effects of remnant term (and of
the shallow potentials in the coming sections) on the SFs. As
discussed in Ref. [34], around 20 − 25% uncertainties are
expected in the extracted SFs, due to the ambiguities of the
optical potentials.

Now I analyze the sensitivity of the transfer cross section
against variations of the R-matrix parameters: the channel
radius R0 and the number of basis functions N . For this,
in Fig. 3, I plot the 16O(d, n)17F(1/2+) differential cross
section at Ed = 11 MeV and θ = 2◦ as a function of (a)
the number of basis functions N , for a fixed value of R0 =
35 fm and (b) of the channel radius R0, for a fixed value
of N = 80. As mentioned earlier, the channel radius has
to be large enough so that the nuclear interactions become
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Fig. 3 16O(d, n)17F(1/2+) transfer cross section at Ed = 11 MeV and
θ = 2◦ as a function of the number of basis functions N (a) and of the
channel radius (b)

negligible. However, large values require large bases, and
hence increase the computer times. Therefore, a compromise
must be adopted for the R-matrix calculations.

Note that, in principle, after the application of R-matrix
method, the integral in Eq. (10) should have two parts, the
internal from 0 to R0 and the external from R0 to ∞. How-
ever, in our approach we have consider R0 as large enough,
so that the latter part contribute negligibly small and it is
rejected while deriving Eq. (28). So therefore, the channel
radius in our approach is also serving as an upper limit of the
integral to ensure the convergence.

From Fig. 3a it is clear that N ≈ 40 are sufficient to
achieve a good convergence. In fact, these numbers are much
smaller than those required in finite-difference methods, such
as the Numerov algorithm where hundreds of points are
needed with typical mesh size of 0.02 fm. Figure 3b shows
that channel radii of around 25 fm and 35 fm are required to
achieve the convergence respectively for the ground and for
the first excited states of 17F. A large radius needed in case
of 1/2+ state is due to its loosely bound nature. In Fig. 4, the
angular distribution for the n transfer leading to the ground
state of 17F at Ed = 11 MeV is plotted as a function of R0
for a fixed value of number of basis functions, N = 80. This
also confirms the findings of Fig. 3b i.e. the convergence is
achieved for R0 ≈ 20 − 25 fm. Similar calculations were
performed in Ref. [22] for the 16O(d, p)16O reaction, where
R0 = 15 − 20 fm was found as large enough to achieve
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Table 2
Single particle SFs for the 1/2+ excited state of 17O and α-SFs for the 0+

2 and 2+
1

states of 16O extracted using two different types of bound-state potentials. The SFs 
for the ground state of d and of 7Li are taken as 1. Uncertainties in the 16O SFs arise 
from different choices of the angular range for the fits (see text).

Nucleus State Beam energy 
(MeV)

SFs 
(WS)

SFs 
(SUSY)

17O 1/2+ 25.4 1.73 1.22
1/2+ 36.0 2.08 1.63

16O 0+
2 28 0.18 ± 0.04 0.19 ± 0.02

16O 0+
2 34 0.24 ± 0.04 0.25 ± 0.03

16O 2+
1 28 0.17 ± 0.02 0.15 ± 0.02

16O 2+
1 34 0.16 ± 0.02 0.14 ± 0.03

Fig. 3. Modified cross sections dσ̃ (rmin)/d#) for the reaction 16O(d, p)17O (1/2+) at 
Ed = 25.4 MeV, plotted at two different angles as a function of the cutoff distance 
rmin over the n+16O coordinate. Dashed and solid lines have the same meaning as 
in Fig. 2.

In Fig. 3, we plot the modified cross sections dσ̃ (rmin)/d# cal-
culated using Ũ (rmin), as a function of cutoff distance rmin over 
the n+16O coordinate. We plot these cross sections at two dif-
ferent scattering angles 2◦ and 50◦ for the deuteron energy 25.4 
MeV. Dashed and solid lines are the same as in Fig. 2. One can 
see that there is a significant difference in both these calcula-
tions for 0 ≤ rmin ≤ 3.6 fm and this is the region where the wave 
functions from both these potentials [see Fig. 1(a)] used for 17O 
differ from each other. This clearly explains the differences be-
tween both calculations in Fig. 2. It is also clear from Fig. 3 that 
this difference increases at large angles. Similar conclusions are 
drawn at Ed = 36 MeV. We also repeated our calculations be-
low the Coulomb barrier (V C = 2.54 MeV) using global deuteron 
and proton optical potentials from Refs. [42,43] and found that for 
deuteron energies well below the barrier SUSY transformations has 
negligible effect. This suggests that the process is completely pe-
ripheral for energies below the barrier. However, for energies far 
above the barrier, differences start appearing between these two 
calculations especially at larger angles, which further increase with 
the energies.

Next, we discuss the 12C(7Li, t)16O reaction, and consider 
α transfer leading to the 0+

2 (Ex = 6.05 MeV) and 2+
1 (Ex =

6.92 MeV) states of 16O. In the literature, the 12C(7Li, t)16O re-
action has been used in indirect measurements of 12C(α, γ )16O 
[35,44], which is very important in nuclear astrophysics. At typ-
ical stellar energies, around 300 keV, the cross section estimates 
rely on extrapolation procedures, due to the difficulties in the di-

Fig. 4. Angular distributions of 12C(7Li, t)16O at two 7Li energies. Dashed and solid 
lines represent calculations using WS and SUSY bound-state potentials in both chan-
nels, respectively. Experimental data are taken from Ref. [35]. Spectroscopic factors 
are given in Table 2. The upper and lower limits, and the hatched regions, represent 
the uncertainties associated with the angular range (see text).

rect measurements [45]. In this procedure, the phenomenological 
R-matrix method is often adopted for fits to the various available 
data, and this also requires spectroscopic information about the 
various states of 16O. It is well known that the reduced α width 
of a bound state mainly depends upon its spectroscopic factor, and 
that α transfer reactions such as (7Li, t) or (6Li, d) provide an effi-
cient way to determine them.

We study the 12C(7Li, t)16O reaction at two 7Li energies (28 and 
34 MeV). As given in Table 1, there are forbidden states both in the 
α + t and in the α+12C potentials. In Fig. 4, we plot the 12C(7Li, 
t)16O angular distribution at 28 and 34 MeV for both 16O states. 
Dashed and solid lines are calculations with the WS and SUSY po-
tentials in both channels, respectively and they are fitted to the 
experimental data of Ref. [35]. As there is no clear minima in the 
data unlike the previous case, to extract the SFs we fit all the avail-
able data points. We fit the data in steps with an increment of 10◦

and extract respective SFs in each interval. The final SF for a given 
state is then obtained by taking the average of the SFs obtained 
from different intervals. In Fig. 4 the upper and lower limits for 
the solid lines, and the hatched regions for the dashed lines, rep-
resent the uncertainties associated with the angular range. These 
α−SFs are presented in Table 2. Additionally, around 46% and 33% 
uncertainties are also expected in the extracted SFs of 0+

2 and 2+
1

states, respectively, due to the ambiguities in the optical potentials 
and due to variation of the bound state potential parameters as 
mentioned in Ref. [35].

The SFs with deep potentials are somewhat larger than those 
obtained in Ref. [35], where they were reported as 0.13+0.07

−0.06 and 
0.15 ± 0.05, respectively. This is due to the inclusion of remnant 
terms in our case, as it was also pointed out in Ref. [30]. These 
SFs remain almost unaltered when we replace the WS potentials 
by their SUSY partners in both channels. However, the shapes of 
the angular distributions (see Fig. 4) are changed significantly, es-
pecially for the 0+

2 state. To trace its origin, we analyze the cross 
sections as a function of the cutoff distance rmin over the α − t and 
α − C distances.

In Fig. 5, we plot the modified cross section dσ̃ (rmin)/d#) at 
θ = 2◦ and 12◦ for the reaction 12C(7Li, t)16O (0+

2 ) at E7 Li =

4


