$\left|V_{c b}\right|$, LFUand $S U(3)_{F}$ symmetry breaking in $B_{(s)} \rightarrow D_{(s)}^{(*)} \ell \nu_{\ell}$ decays using Lattice QCD and Unitarity
[PRD '21 (2105.02497), PRD '21 (2105.07851), PRD '22 (2105.08674), 2109.15248, 2202.10285, ...]

OUTLINE OF THE TALK
 1) State of the art;
 2) The Dispersive Matrix (DM) Method; 3) Applications to $B_{(s)} \rightarrow D_{(s)}^{(*)} \ell \nu_{\ell}\left(\left|V_{c b}\right| \& R\left(D_{(s)}^{(*)}\right)\right.$; 4) Conclusions.

Università di Pisa

Istituto Nazionale di Fisica Nucleare Sezione di Pisa

Presenter: Manuel Naviglio (Pisa U., INFN Pisa)
Work in collaboration with: G.Martinelli, S. Simula and L.Vittorio

WHY B DECAYS?

There are mainly two issues for which B decays are interesting.
$V_{c b}$ puzzle:
EXCLUSIVE:

$$
\left|V_{c b}\right| \times 10^{3}=39.36(68)
$$

FLAG Review 2021 [arXiv:2111.09849]

$$
R\left(D^{(*)}\right)
$$ anomaly:

$$
\begin{aligned}
& R(D)=\frac{\mathscr{B}\left(B \rightarrow D \tau \nu_{\tau}\right)}{\mathscr{B}\left(B \rightarrow D \ell \nu_{\ell}\right)} \\
& R\left(D^{*}\right)=\frac{\mathscr{B}\left(B \rightarrow D^{*} \tau \nu_{\tau}\right)}{\mathscr{B}\left(B \rightarrow D^{*} \ell \nu_{\ell}\right)}
\end{aligned}
$$

~ 3.4σ discrepancy between exp.s and "SM"!

"SM"=mix of theoretical calculations and experimental data to constrain the shape of the hadronic form factors (FFs)

$\sim 2.7 \sigma$ difference excl./incl.

INCLUSIVE:
$\left|V_{c b}\right| \times 10^{3}=42.16(50)$
Bordone et al., Phys.Lett.B [2107.00604]

THE DISPERSIVE MATRIX (DM) METHOD

To extract the CKM matrix elements and to test LFU it is necessary to compute the form factors entering the hadronic matrix element as precisely as possible.
Starting from an existing work [L. Lellouch, Nucl. Phys. B 479 (1996)] we introduced new results PRD '21 (2105.02497). $\left(\begin{array}{llllll}\chi & \phi f & \phi_{1} f_{1} & \phi_{2} f_{2} & \ldots & \phi_{N} f_{N}\end{array}\right) \quad$ The idea is to the construct the matrix \mathbf{M}.

The matrix depends from the following input quantities:

- The values z_{1}, \ldots, z_{N} at which the FFs have been computed (e.g. on the lattice);
- The correspondent computed values f_{1}, \ldots, f_{N} of the FFs in that points;
- The susceptibility χ.

Then, z is the point in correspondence of which we would know the value of f.
The properties of this matrix allow us to find bounds on the form factor in the unknown point z !!!

$$
\operatorname{det} M \geq 0 . \longrightarrow f_{l o(u p)}(z)=\beta(z) \pm \sqrt{\gamma(z)}
$$

Chosen our set of $(\mathbf{n}+\mathbf{1})$ input data $\left\{\chi, f\left(z_{1}\right), \ldots, f\left(z_{n}\right)\right\}$, the DM method allows to reconstruct the interval of the possible values of the form factor in a generic point z in a total model independent way and without any truncation (differently from CLN, BGL...)!

The obtained band of values represents the results of all possible BGL fits satisfying unitarity (the DM result always satisfy unitarity by construction) and passing trough the known points!!!

It contains at least the following three advantages:

1) The method doesn't rely on any assumption about the functional dependence of the FFs on the momentum transferred. Then, in this sense, it is model independent;
2) It's entirely based on first principles. The susceptibilities are non perturbative and we don't have series expansions;
3) Keeps theoretical calculations and experimental data separated.

The last point is crucial to really test the SM predictions!

$B \rightarrow D^{*} \ell \nu_{\ell}$ FROM FNAL/MILC (arXiv:2105.14019)

The FNAL/MILC collaboration recently computed the form factors for $B \rightarrow D^{*} \ell \nu_{\ell}$ decays

By performing a joint fit using
LQCD pts + Belle + BaBar exp. data

They obtain

$$
\begin{aligned}
& \left|V_{c b}\right| \cdot 10^{3}=38.40 \pm 0.74 \\
& R\left(D^{*}\right)=0.2483 \pm 0.0013
\end{aligned}
$$

$$
\text { in tension with }\left|V_{c b}\right|_{i n c} \text { and } R^{\exp }\left(D^{*}\right)
$$

But, to which theory do the joint-fit FFs belong? Are $\left|V_{c b}\right|$ and $R\left(D^{*}\right)$ pure SM predictions?

$B \rightarrow D^{*} \ell \nu_{\ell}$ USING DM METHOD (arXiv:2109.15248)

Our results have been obtained ONLY using the 3 lattice QCD data from FNAL/MILC arXiv:2105.14019.

We used non-perturbative susceptibilities from arXiv:2105.07851 and we took the resonances from Bigi et al., arXiv:1707.09509.

We obtained a pure SM prediction

$$
R^{D M}\left(D^{*}\right)=0.275 \pm 0.008
$$

that compared with HFLAV

$$
R^{\text {exp. }}\left(D^{*}\right)=0.295 \pm 0.014
$$

has $\simeq 1.2 \sigma$ difference.

$\left|V_{c b}\right|$ from $B \rightarrow D^{*} \ell \nu_{\ell}$ USING DM METHOD (arXiv:2109.15248)

blue data: Belle 1702.01521
red data: Belle 1809.03290

To extract $\left|V_{c b}\right|$ we don't mix theoretical computation with experimental data

$$
\left|V_{c b}\right|_{i}=\sqrt{\frac{(d \Gamma / d x)_{i}^{e x p}}{(d \Gamma / d x)_{i}^{t h}}} \quad i=1, \ldots, N_{b i n s}
$$

Then we extract the final result by making (correlated) weighted averages of the bins:
$\left.V_{c b}\right|_{\text {excl. }} ^{D M} \cdot 10^{3}=41.3 \pm 1.7$
$\left|V_{c b}\right|_{\text {incl. }} \cdot 10^{3}=42.16 \pm 0.50$ (Bordone et al: arXiv:2107.00604)
Exclusive/inclusive tension reduced to less than $1 \sigma!!!$

It's crucial to observe that the value of $\left|V_{c b}\right|$ exhibits some dependence on the specific w-bin. Furthermore, the value of $\left|V_{c b}\right|$ deviates from a constant fit for $x=\cos \left(\theta_{v}\right)$.

These effects seem to be related to a a different w-slope of the theoretical FFs based on lattice FNAL/MILC with respect to the Belle experimental data. This issue has to be further investigated.

In arXiv:2105.08674, our DM method has been applied also to $B \rightarrow D$ decays:

- 3 FNAL/MILC data for each FF: preliminary results contained in arXiv:1503.07237
- Experimental data from Belle collaboration in 10 bins (arXiv:1510.03657)

HFLAV '21 $R^{\exp }(D)=0.339 \pm 0.030$
$\simeq 1.4 \sigma$ difference
KC at maximum reco for each bootstrap
0.06 z

$$
R(D)=0.296(8)
$$

\square
 0.035
0.030

There is a nice consistency with $\left|V_{c b}\right|$ from

$$
B \rightarrow D^{*} \ell \nu_{\ell}
$$

Blue points from Belle data: arXiv:1510.03657
MEAN: dashed orange band
Bin Number
$B_{s} \rightarrow D_{s}^{(*)} \ell \nu_{\ell}$ USING DM METHOD and $S U(3)_{F}$ BREAKING EFFECTS (arXiv:2204.05925)
Using LQCD computations from HPQCD arXiv:1906.00701 and arXiv:2105.11433 we extracted the form factors for $B_{s} \rightarrow D_{s}^{(*)}$ and we developed a comparison with $B \rightarrow D^{(*)}$

$$
B_{(s)} \rightarrow D_{(s)} \ell \nu_{\ell}
$$

ratios of branching ratios

$$
\begin{array}{ll}
\left.\frac{\mathscr{B}\left(B_{s} \rightarrow D_{s} \mu \nu_{\mu}\right)}{\mathscr{B}\left(B \rightarrow D \mu \nu_{\mu}\right)}\right|_{\mathrm{LHCb}}=1.09 \pm 0.09 & \left.\frac{\mathscr{B}\left(B_{s} \rightarrow D_{s} \mu \nu_{\mu}\right)}{\mathscr{B}\left(B \rightarrow D \mu \nu_{\mu}\right)}\right|_{\mathrm{DM}}=1.02 \pm 0.06 \\
\left.\frac{\mathscr{B}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)}{\mathscr{B}\left(B \rightarrow D^{*} \mu \nu_{\mu}\right)}\right|_{\mathrm{LHCb}}=1.06 \pm 0.10 & \left.\frac{\mathscr{B}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)}{\mathscr{B}\left(B \rightarrow D^{*} \mu \nu_{\mu}\right)}\right|_{\mathrm{DM}}=1.19 \pm 0.11
\end{array}
$$

$$
B_{(s)} \rightarrow D_{(s)}^{*} \ell \nu_{\ell}
$$

We observe some $S U(3)_{F}$ breaking effects in $B_{(s)} \rightarrow V$

More investigation needed!

$\left|V_{c b}\right|^{D M}$ AND OBSERVABLES FROM $B_{(s)} \rightarrow D_{(s)}^{(*)} \ell \nu_{\ell}$

Using the fully theoretical form factors and two sets of experimental data from LHCb collaboration: arXiv:2001.03225 and arXiv:2003.08453, we extracted estimates for $\left|V_{c b}\right|^{D M}$ also from $B_{s} \rightarrow D_{s}^{(*)}$. We report a summary of the results obtained from $B_{(s)} \rightarrow D_{(s)}^{(*)} \ell \nu_{\ell}$, also for the observables.

Process	Reference	$V_{c b} \times 10^{3}$
Inclusive $b \rightarrow c$	Bordone et al., arXiv:2107.00604	42.16 ± 0.50
$B \rightarrow D$	DM method	41.0 ± 1.2
	FLAG 2021, arXiv:2111.09849	40 ± 1.0
$B \rightarrow D^{*}$	DM method	41.3 ± 1.7
	FLAG 2021, arXiv:2111.09849	39.86 ± 0.88
$B_{s} \rightarrow D_{s}$	DM method	42.4 ± 2.0
$B_{s} \rightarrow D_{s}^{*}$	DM method	41.4 ± 2.6
	HPQCD Coll., arXiv:2105.11433	42.2 ± 2.3

Total Mean	DM method	41.4 ± 0.8

For the first time, there is an indication of a sizable reduction of the $V_{c b}$ puzzle!!!

[^0]CONCLUSIONS

CKM Matrix element	DM method estimate
$V_{c b} \times 10^{3}$	41.4 ± 0.8
$V_{u b} \times 10^{3}$	3.85 ± 0.2

See Ludovico Vittorio's talk for the DM application to heavy-to-light decays

- The Dispersive Matrix method is very effective and precise in its prediction;
- Model independent analysis keeping theory and experiments separated;
- Reduction of $\left|V_{c b}\right|$ puzzle and $R\left(D^{*}\right)$ anomaly.

Bach-upslides

HOW THE METHOD WORKS: THE STARTING POINT

The imaginary part of the longitudinal and transverse polarization functions are related to their derivatives with respect q^{2} by

$$
\chi_{0^{+}}\left(q^{2}\right)=\frac{\partial}{\partial q^{2}}\left[q^{2} \Pi_{0^{+}}\left(q^{2}\right)\right]=\frac{1}{\pi} \int_{0}^{\infty} d z \frac{z \operatorname{Im} \Pi_{0^{+}}}{\left(z-q^{2}\right)^{2}}, \quad \quad \chi_{1^{-}}\left(q^{2}\right)=\frac{1}{2}\left(\frac{\partial}{\partial q^{2}}\right)^{2}\left[q^{2} \Pi_{1^{-}}\left(q^{2}\right)\right]=\frac{1}{\pi} \int_{0}^{\infty} d z \frac{z \operatorname{Im} \Pi_{1^{-}}}{\left(z-q^{2}\right)^{3}},
$$

where for a generic current J

$$
\left.\operatorname{Im} \Pi_{0^{+}, 1^{-}}=\frac{1}{2} \sum_{n} \int d \mu(n)(2 \pi)^{4} \delta^{(4)}\left(q-p_{n}\right)|\langle 0| J| n\right\rangle \mid
$$

We can restrict our attention to a subset of hadronic states and thus produce, using analyticity, a strict inequality

$$
\frac{1}{2 \pi i} \int_{|z|=1} \frac{d z}{z}\left|\phi\left(z, q^{2}\right) f(z)\right|^{2} \leq \chi\left(q^{2}\right)
$$

where f is a generic form factor and ϕ an associated kinematical function which may contain subtraction of resonances.

We can introduce the inner product

$$
\langle g \mid h\rangle=\frac{1}{2 \pi i} \int_{|z|=1} \frac{d z}{z} \bar{g}(z) h(z) .
$$

Using this formalism, the inequality can be simply written as

$$
0 \leq\langle\phi f \mid \phi f\rangle \leq \chi\left(q^{2}\right)
$$

Introducing the function $g_{t}(z)=\frac{1}{1-\bar{z}(t) z}$ and using the definition of the inner product we can define

The positivity of the inner product guarantees that

$$
\operatorname{det} M \geq 0
$$

This condition leads to a constraints on the form factor f computed in the generic unknown point t

$$
f_{l o}(t) \leq f(t) \leq f_{u p}(t)
$$

where
α and $\Delta_{1}(t)$ are determinants of minors of M depending only on kinematical factors.

$$
f_{l o(u p)}(t)=f(t) \mp \frac{1}{\alpha \phi} \sqrt{\Delta_{1}(t) \Delta_{2}^{f}}
$$

The crucial point is that $\Delta_{1}(t)>0 \forall t \longrightarrow \Delta_{2}^{f}$ must be positive! If $\Delta_{2}^{f}>0$ the unitarity is always satisfied $\forall t$!
$f_{l o(u p)}$ are defined if unitarity is satisfied. Then, the bounds that we can obtain imposing $\Delta_{2}^{f}>0$ in the Dispersive
Matrix method always satisfy unitarity!!!

We build a multivariate Gaussian distribution of $N_{\text {boot }}$ bootstrap events both for the form factors extracted from the three-point functions and for the susceptibilities (properly correlated if we have access to the data of the simulations) in our numerical simulation and covariance matrix $\Sigma_{i j}=\rho_{i j} \sigma_{i} \sigma_{j}$.

To take into account in our analysis the Kinematical Constraint for each of the $N_{\text {boot }}$ events we define

$$
\begin{aligned}
& f_{l o}^{*}(0)=\min \left[f_{+, l o}(0), f_{0, l o}(0)\right], \\
& f_{u p}^{*}(0)=\max \left[f_{+, u p}(0), f_{0, u p}(0)\right] .
\end{aligned} \quad \begin{aligned}
& f_{l o}^{*}(0) \leq f(0) \leq f_{u p}^{*}(0) .
\end{aligned}
$$

If we consider $f(0)$ to be uniformly distributed in this range, we can generate N_{0} values, obtaining a sample of $\bar{N}_{\text {boot }}=N_{\text {boot }} \times N_{0}$, that we can add to the input data set as a new point at $t_{n+1}=0$.

THE NOVELTIES OF OUR WORK: RECOMBINATIONS AND BOOTSTRAPS

To recombine the $N_{\text {boot }}$ events we generate the corresponding histograms and fit them with a Gaussian Ansatz. We can then extract for every value of t average values $f_{l o(u p)}(t)$, standard deviations $\sigma_{l o(u p)}$ and the corresponding correlation $\rho_{l o, u p}(t)=\rho_{u p, l o}(t)$.

By combining the flat distribution that we have between $f_{l o}$ and $f_{u p}$ with a multivariate Gaussian distribution necessary to mediate over the whole set of bootstrap events, we can obtain the final values for the form factor $f(t)$ and its variance $\sigma_{f}^{2}(t)$ using

$$
\begin{aligned}
& f(t)=\frac{f_{l o}(t)+f_{u p}(t)}{2} \\
& \sigma_{f}^{2}(t)=\frac{1}{12}\left[f_{u p}(t)-f_{l o}(t)\right]^{2}+\frac{1}{3}\left[\sigma_{l o}^{2}(t)+\sigma_{u p}(t)^{2}+\rho_{l o, u p}(t) \sigma_{l o}(t) \sigma_{u p}(t)\right] .
\end{aligned}
$$

- Production of a pseudoscalar meson (i.e. D):

$$
\begin{aligned}
\frac{d \Gamma}{d q^{2}} & =\frac{G_{F}^{2}\left|V_{c b}\right|^{2} \eta_{E W}^{2}}{24 \pi^{3}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2} \\
& \times\left[\left.\left|\vec{p}_{D}\right|^{3}\left(1+\frac{m_{\ell}^{2}}{2 q^{2}}\right) f^{+}\left(q^{2}\right)\right|^{2}+\left.m_{B}^{2}\left|\vec{p}_{D}\right|\left(1-\frac{m_{D}^{2}}{m_{B}^{2}}\right)^{2} \frac{3 m_{\ell}^{2}}{8 q^{2}} f^{0}\left(q^{2}\right)\right|^{2}\right]
\end{aligned}
$$

- Production of a vector meson (i.e. D*):

$$
\frac{d \Gamma_{\tau}}{d w}=\frac{d \Gamma_{\tau, 1}}{d w}+\frac{d \Gamma_{\tau, 2}}{d w}\left[\left\{\begin{array}{l}
\frac{d \Gamma_{\tau, 1}}{d w}=\left(1-\frac{m_{\tau}^{2}}{q(w)^{2}}\right)^{2}\left(1+\frac{m_{\tau}^{2}}{2 q(w)^{2}}\right) \times \frac{d \Gamma}{d w} \\
\frac{d \Gamma}{d w}=\frac{\eta_{E W}^{2} G_{F}^{2} m_{D^{*}}^{2}\left|V_{c b}\right|^{2}}{48 \pi^{3} m_{B}} \sqrt{w^{2}-1}\left[2 q^{2}(w)\left(f(w)^{2}+m_{B}^{2} m_{D^{*}}^{2}\left(w^{2}-1\right) q(w)^{2}\right)+\mathscr{F}_{1}(w)^{2}\right] \\
\frac{d \Gamma_{\tau, 2}}{d w}=\frac{\eta_{E W}^{2} \mid V_{c b}^{2} G_{F}^{2} m_{B}^{5}}{32 \pi^{3}} \frac{m_{\tau}^{2}\left(m_{\tau}^{2}-q(w)^{2}\right)^{2} r^{3}(1+r)^{2}\left(w^{2}-1\right)^{3} P^{2}(w)^{2}}{q(w)^{6}}
\end{array}\right.\right.
$$

Relation between the momentum transfer and the recoil:

$$
q^{2}=m_{B}^{2}+m_{P}^{2}-2 m_{B} m_{P} w
$$

Two FFs coupled to the lepton: $f_{0}(w)$ (pseudoscalar), $P_{1}(w)$ (vector)

COMPARISON JOINT FIT AND DM RESULTS

FNAL/MILC AND JNP JOINT FITS

FNAL/MILC joint fit (arXiv:2105.14019) uses Belle+BaBar data and new FNAL/MILC LQCD points JNP 20 fit (Jaiswal et al. JHEP '20) uses Belle data + old FNAL/MILC LQCD point $h_{A_{1}}(1)$

FNAL/MILC LATTICE ONLY FIT AND DM RESULTS

If we consider the quadratic BGL fit of LQCD points only made by FNAL/MILC we obtain an overall consistency. There is some difference in $F_{1}\left(w_{\max }\right)$ that impacts $R\left(D^{*}\right)$

$$
R\left(D^{*}\right)=0.265 \pm 0.013 \quad R\left(D^{*}\right)=0.275 \pm 0.008
$$

Starting from the FFs bands, we use the experimental data to compute bin-per-bin estimates of Vcb. NB: the experimental data do NOT enter in the determination of the bands of the FFs!!!

To do it, it is sufficient to compare the two sets of measurements of the differential decay widths

$$
d \Gamma / d x \quad x=w, \cos \theta_{l}, \cos \theta_{v}, \chi
$$

by the Belle Collaboration (arXiv:1702.01521, arXiv:1809.03290) with their theoretical estimate, computed through the unitarity bands shown before. $\frac{d \Gamma\left(B \rightarrow D^{*}(\rightarrow D \pi) \ell \nu\right)}{d w d \cos \theta_{\ell} d \cos \theta_{v} d \chi}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2} \eta_{E W}^{2}}{4(4 \pi)^{4}} 3 m_{B} m_{D^{*}}^{2} \sqrt{w^{2}-1}$

$$
\begin{aligned}
& \times B\left(D^{*} \rightarrow D \pi\right)\left\{\left(1-\cos \theta_{\ell}\right)^{2} \sin ^{2} \theta_{v}\left|H_{+}\right|^{2}\right. \\
& +\left(1+\cos \theta_{\ell}\right)^{2} \sin ^{2} \theta_{v}\left|H_{-}\right|^{2}+4 \sin ^{2} \theta_{\ell} \cos ^{2} \theta_{v}\left|H_{0}\right|^{2} \\
& -2 \sin ^{2} \theta_{\ell} \sin ^{2} \theta_{v} \cos 2 \chi H_{+} H_{-} \\
& -4 \sin \theta_{\ell}\left(1-\cos \theta_{\ell}\right) \sin \theta_{v} \cos \theta_{v} \cos \chi H_{+} H_{0} \\
& \left.+4 \sin \theta_{\ell}\left(1+\cos \theta_{\ell}\right) \sin \theta_{v} \cos \theta_{v} \cos \chi H_{-} H_{0}\right\},
\end{aligned}
$$

We find:

To mediate (for each kinematical variable) the various Vcb estimates:

$$
\left|V_{c b}\right|=\frac{\sum_{i, j=1}^{10}\left(\mathbf{C}^{-1}\right)_{i j}\left|V_{c b}\right|_{j}}{\sum_{i, j=1}^{10}\left(\mathbf{C}^{-1}\right)_{i j}}, \quad \sigma_{\left|V_{c b}\right|}^{2}=\frac{1}{\sum_{i, j=1}^{10}\left(\mathbf{C}^{-1}\right)_{i j}}
$$

Red points: arXiv:1809.03290 MEAN: red band

Blue squares: arXiv:1702.01521 MEAN: blue band

In some cases, there is an evident underestimation of the weighted mean value!
This problem is well-known and has been deeply studied in Nucl.Instrum.Meth.A 346 (1994) 306-311

Alternative strategy?

We suppose that there is a calibration error in the data. Thus, calling x one of the four kinematical variables of interest, we compute the quantity ($\mathbf{d} \Gamma / \mathbf{d x}$)/ $/$ by using the experimental data by Belle.

In this way, we reduce this error since all the points enter in the evaluation of Γ !
By computing the correlations between the various bins of $(\mathrm{d} \Gamma / \mathrm{dx}) / \Gamma$, we define a new experimental covariance matrix as

$$
\left.C_{i j}\right|_{\text {exp }, N E W}=\frac{\begin{array}{l}
\text { Correlation of } \\
(\mathrm{d} \Gamma / \mathrm{dx}) / \Gamma \\
\rho_{i j} \mid \text { ratio }
\end{array} \times \sigma_{i, e x p} \sigma_{j, \exp }}{\text { Experimental errors }}
$$

This procedure has two advantages:
1.The new covariance matrix will be free of calibration errors
2.The fact that (for a fixed kinematical variable) the ten bins are not independent is taken into account

BEFORE the modification of the correlations

Red points: arXiv:1809.03290 MEAN: red band

Blue squares: arXiv:1702.01521 MEAN: blue band

AFTER the modification of the correlations

Red points: arXiv:1809.03290 MEAN: red band

Blue squares: arXiv:1702.01521 MEAN: blue band

$$
\left|V_{c b}\right|=(41.3 \pm 1.7) \cdot 10^{-3}
$$

A METHODOLOGIGAL BREAK: COMPARISON WITH BGL/BCL

What is the main improvement with respect to BGL parametrization?

Basics of BGL: the hadronic FFs corresponding to definite spin-parity can be represented as an expansion, originating from unitarity, analyticity and crossing symmetry, in terms of the conformal variable z, for instance

$$
g(z)=\frac{1}{\sqrt{\chi_{1-}\left(q_{0}^{2}\right)}} \frac{1}{\phi_{g}\left(z, q_{0}^{2}\right) P_{1^{-}}(z)} \sum_{n=0}^{\infty} a_{n} z^{n}
$$

And unitarity?

$$
\sum_{n=0}^{\infty} a_{n}^{2} \leq 1
$$

Boyd, Grinstein and Lebed, Phys. Lett. B353, 306 (1995)
Boyd, Grinstein and Lebed, Nucl. Phys. B461, 493 (1996)
Boyd, Grinstein and Lebed, Phys. Rev. D 56, 6895 (1997)

A METHODOLOGIGAL BREAK: COMPARISON WITH BGL/BCL

Let us use the BGL parametrization to fit $g(w)$ by using the final FNAL/MILC computations of that FF .
How does unitarity work in this case? Two possible fits (3 points as inputs...):

$$
\begin{array}{cl}
\text { LINEAR } & \text { QUADRATIC } \\
a_{0}^{2}+a_{1}^{2} \leq 1 & a_{0}^{2}+a_{1}^{2}+a_{2}^{2} \leq 1
\end{array}
$$

100\% of generated bootstraps passes the unitarity filter

12\% of generated bootstraps passes the unitarity filter

w	g(w)	correlation matrix		
1.03	0.372 (14)	1	0.928	0.657
1.10	0.331 (13)		1	0.832
1.17	0.291 (17)			1

Unitarity is not built-in!!!

The consequence is that a truncated BGL fit might be distorted by events which do not fulfill unitarity...

A METHODOLOGIGAL BREAK: COMPARISON WITH BGL/BCL

To summarize, there are two important improvements in the DM method with respect to BGL parametrization:

- No series expansion to describe the FFs

NO TRUNCATION ERRORS!
This effect is particularly relevant for semileptonic decays characterized by a very large q^{2} range:

$$
\begin{array}{ll}
B \rightarrow \pi \ell \nu & \text { Maximum } q^{2}=26.46 \mathrm{GeV}^{2} \\
\Lambda_{b} \rightarrow p \ell \nu & \text { Maximum } q^{2}=21.9 \mathrm{GeV}^{2}
\end{array}
$$

- Unitarity check of FFs data completely independent of the parameterization

The DM approach reproduces exactly the known data and it allows to extrapolate the form factor in the 'whole kinematical range in a parameterization-independent way providing a band of values representing the results of all possible BGL fits satisfying unitarity and passing through the known points (important for estimating uncertainties)

Lattice QCD form factors from HPQCD arXiv:1906.00701 $\left(B_{s} \rightarrow D_{s}\right)$ and arXiv:2105.11433 ($B_{s} \rightarrow D_{s}^{*}$) in the form of BCL fits in the whole kinematical range.

We extract 3 data points for the FFs at small values of the recoil and we apply the DM approach

$$
B_{s} \rightarrow D_{s}^{*} \ell \nu_{t}
$$

* nice agreement in the whole kinematical range

EXTRACTION OF $\left|V_{c b}\right|$ FROM SEMILEPTONIC $B_{s} \rightarrow D_{s}^{(*)}$ DECAYS (arXiv:2204.05925)

We had two sets experimental data from LHCb collaboration: arXiv:2001.03225 and arXiv:2003.08453 coming from two different runs. We made three analysis:

1) ratios of the branching ratios [2001.03225]

$$
\begin{aligned}
& \frac{\mathscr{B}\left(B_{s} \rightarrow D_{s} \mu \nu_{\mu}\right)}{\mathscr{B}\left(B \rightarrow D \mu \nu_{\mu}\right)}=1.09 \pm 0.05_{\text {stat }} \pm 0.06_{\text {syst }} \pm 0.05_{\text {inputs }}=1.09 \pm 0.09 \\
& \frac{\mathscr{B}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)}{\mathscr{B}\left(B \rightarrow D^{*} \mu \nu_{\mu}\right)}=1.06 \pm 0.05_{\text {stat }} \pm 0.07_{\text {syst }} \pm 0.05_{\text {inputs }}=1.06 \pm 0.10
\end{aligned}
$$

Using the PDG values for $\mathscr{B}\left(B \rightarrow D^{(*)} \mu \nu_{\mu}\right)$ and the B_{s} meson lifetime one gets

$$
\begin{aligned}
& \Gamma^{L H C b}\left(B_{s} \rightarrow D_{s} \mu \nu_{\mu}\right)=(1.08 \pm 0.10) \cdot 10^{-14} \mathrm{GeV} \\
& \Gamma^{L H C b}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)=(2.34 \pm 0.26) \cdot 10^{-14} \mathrm{GeV}
\end{aligned}
$$

$$
\Gamma^{D M}\left(B_{s} \rightarrow D_{s} \mu \nu_{\mu}\right) /\left|V_{c b}\right|^{2}=(6.04 \pm 0.23) \cdot 10^{-12} \mathrm{GeV}
$$

$$
\Gamma^{D M}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right) /\left|V_{c b}\right|^{2}=(1.29 \pm 0.11) \cdot 10^{-11} \mathrm{GeV}
$$

$$
\left|V_{c b}\right|^{D M} \cdot 10^{3}
$$

$$
B_{s} \rightarrow D_{s} \ell \nu_{\ell} \quad 42.3 \pm 2.1
$$

$$
B_{s} \rightarrow D_{s}^{*} \ell \nu_{\ell} \quad 41.0 \pm 2.8
$$

EXTRACTION OF $\left|V_{c b}\right|$ FROM SEMILEPTONIC $B_{s} \rightarrow D_{s}^{(*)}$ DECAYS (arXiv:2204.05925)

2) Differential decay rates reconstructed from the LHCb fits of p_{\perp} distributions (BGL/CLN parameterizations for the FFs) carried out in arXiv:2001.03225
bin-per-bin analysis: $\left|V_{c b}\right|_{j}=\sqrt{\frac{d \Gamma^{L H C b} / d w_{j}}{d \Gamma^{D M} / d w_{j}}} \quad j=1, \ldots, N_{b i n s}$ we adopted $N_{\text {bins }}=14 w-b i n s$

$$
\begin{array}{lc}
\text { decays } & \left|V_{c b}\right|^{D M} \cdot 10^{3} \\
B_{s} \rightarrow D_{s} \ell \nu_{\ell} & 42.4 \pm 1.9 \\
B_{s} \rightarrow D_{s}^{*} \ell \nu_{\ell} & 41.9 \pm 2.2 \\
& \\
\left|V_{c b}\right|^{L H C b} \cdot 10^{3} & =42.3 \pm 1.7
\end{array}
$$

2) LHCb ratios from arXiv:2003.08453

$$
\Delta r_{j}=\frac{d \Gamma_{j}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)}{\Gamma\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)} \quad j=1, \ldots, 7
$$

j	1	2	3	4	5	6	7
w-bin	$1.000-1.1087$	$1.1087-1.1688$	$1.1688-1.2212$	$1.2212-1.2717$	$1.2717-1.3226$	$1.3226-1.3814$	$1.3814-1.4667$
Δw_{j}	0.1087	0.0601	0.0524	0.0505	0.0509	0.0588	0.0853
$\Delta r_{j}^{\mathrm{LHCb}}$	$0.183(12)$	$0.144(8)$	$0.148(8)$	$0.128(8)$	$0.117(7)$	$0.122(6)$	$0.158(9)$
$\Delta r_{j}^{\text {DM }}$	$0.1942(82)$	$0.1534(45)$	$0.1377(28)$	$0.1289(18)$	$0.1212(20)$	$0.1241(40)$	$0.1405(110)$

consistency within $\sim 1 \sigma$

shape of theoretical FFs is consistent with the one of the experimental data

EXTRACTION OF $\left|V_{c b}\right|$ FROM SEMILEPTONIC $B_{s} \rightarrow D_{s}^{(*)}$ DECAYS (arXiv:2204.05925)

To extract $\left|V_{c b}\right|$, we evaluated the integrated experimental differential decays rate for each bin

$$
\Delta \Gamma_{j}^{e x p}=\Delta r_{j}^{L H C b} \cdot \Gamma^{L H C b}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right) \quad j=1, \ldots, 7
$$

and the covariance matrix: $\Gamma_{i j}^{e x p}=R_{i j}^{L H C b}\left[\bar{\Gamma}^{2}+\sigma_{\bar{\Gamma}}^{2}\right]+\Delta r_{i}^{L H C b} \Delta r_{j}^{L H C b} \sigma_{\bar{\Gamma}}^{2}$

$$
\text { general property: } \sum_{i, j=1}^{N_{\text {bins }}} \Gamma^{\text {exp }}=\sigma_{\bar{\Gamma}}^{2} \quad \longleftrightarrow \quad \sum_{j=1}^{N_{\text {bins }}} \Delta r_{j}^{L H C b}=1 \quad \text { and } \sum_{i, j=1}^{N_{\text {bins }}} R_{i j}^{L H C b}=0
$$

- D'Agostini effect (NIMA '94): negative bias on constant fits to data affected by an overall normalization uncertainty;

It depends upon $\sigma_{\bar{\Gamma}}$ and $\Delta r_{i}^{L H C b} \neq \Delta r_{j}^{L H C b}$

Modified covariance matrix

$$
\begin{aligned}
& \tilde{\Gamma}_{i j}^{\exp }=R_{i j}^{L H C b}\left[\bar{\Gamma}^{2}+\sigma_{\bar{\Gamma}^{2}}\right]+\sigma_{\bar{\Gamma}}^{2} / N_{\text {bins }}^{2} \\
& \sum_{i, j=1}^{N_{\text {bins }}} \tilde{\Gamma}_{i j}^{\exp }=\sum_{i, j=1}^{N_{\text {bins }}} \Gamma_{i j}^{\exp }=\sigma_{\bar{\Gamma}}^{2}
\end{aligned}
$$

Correlated weighted averages

$$
\begin{aligned}
& \left|V_{c b}\right| \cdot 10^{3}=38.6 \pm 2.7 \\
& \left|V_{c b}\right| \cdot 10^{3}=41.2 \pm 2.4
\end{aligned}
$$

[^0]: $R\left(D^{*}\right)$ anomaly, based on the FNAL/MILC FFs, results to be lighter with respect to the 2.5σ discrepancy stated by HFLAV!

