Observation of simultaneous production of 3 J/Ψ mesons in pp collisions

Jhovanny Andres Mejia Guisao On behalf of the CMS collaboration

ICHEP2022: 41st International Conference on High Energy Physics, 6-13 Jul 2022, Bologna (Italy)

arXiv:2111.05370, CMS-BPH-21-004; CERN-EP-2021-215 Submitted to Nature Physics

Observation of simultaneous production of 3 J/ Ψ mesons in pp collisions

ICHEP2022

Observation of triple J/ ψ meson production

Motivation

- → The triple-parton scattering process has only been proposed recently for study at the LHC[link].
- Searched for the very rare process of three J/ψ particles being produced in a single p-p collision
 - Such a process has never been observed before!
 - It provides an alternative way to estimate the effective transverse distance among the interacting constituents inside the proton.
- → Many of the features between individual partons, are very difficult to calculate theoretically[<u>link</u>].
- Measurements of such processes allow for a deeper understanding of the proton structure.
- → Besides, also of relevance at the LHC to predict backgrounds in rare Standard Model processes, and in searches for New Physics[link1,link2].

$\sigma_{\rm eff,DPS}$ effective cross section

In the simplest approach[<u>link</u>], ignoring any correlations between the individual partons

$$\sigma_{\rm DPS}^{\rm pp \to \psi_1 \psi_2 + \chi} = \left(\frac{\mathfrak{m}}{2}\right) \frac{\sigma_{\rm SPS}^{\rm pp \to \psi_1 + \chi} \sigma_{\rm SPS}^{\rm pp \to \psi_2 + \chi}}{\sigma_{\rm eff, DPS}}$$

 $\sigma_{\rm eff,DPS}$ is an effective cross section that, in a purely geometric approach, can be determined from the pp transverse overlap.

- actually, in PYTHIA8 and HERWIG++ ~~20-30 mb
- from processes involving pairs of high-pT jets and/or EW bosons ~~10-20 mb
- from measurements of quarkonium pair production ~~3-10 mb

The study of TPS via triple-J/ψ production can help

$$\sigma_{\text{TPS}}^{\text{pp} \to \psi_1 \, \psi_2 \, \psi_3 + X} = \left(\frac{\mathfrak{m}}{3!}\right) \, \frac{\sigma_{\text{SPS}}^{\text{pp} \to \psi_1 + X} \, \sigma_{\text{SPS}}^{\text{pp} \to \psi_2 + X} \, \sigma_{\text{SPS}}^{\text{pp} \to \psi_3 + X}}{\sigma_{\text{eff},\text{TPS}}^2} \, \sigma_{\text{eff},\text{TPS}}^{\text{eff},\text{TPS}} \, \sigma_{\text{eff},\text{TPS}}^{\text{eff},\text{TPS}}$$

From HELAC-ONIA[link], in the production of three prompt-J/ ψ the pure SPS contributions are negligible compared to those from DPS and TPS. **Golden Channel**.

Inclusive triple-J/ψ production via n-parton scatterings (NPS)

Observation of triple J/ψ meson production

Jhovanny Andres Mejia Guisao

ICHEP2022

Selection and fit

Trigger: $J/\psi \rightarrow \mu + \mu - \text{ candidate plus an additional muon pT>3.5 GeV for |\eta|<1.2 (barrel) pT>2.5 GeV for 1.2<|\eta|<2.4 (endcap)$

- ➤ 6 muons
- Dimuon invariant mass between 2.9 and 3.3 GeV
 - muons in pair must have opposite charge
 - \circ no muon is shared between 2 J/ ψ candidates

CMS 133 fb⁻¹ (13 TeV) 133 fb⁻¹ (13 TeV Events / 50 MeV Events / 50 MeV 50 MeV 9 8 7 6 5 4 3 2 Data Data Data - Total fit - Total fit - Total fit J/w J/w J/w signal J/w J/w J/w signal Events J/w J/w J/w signal 0⊑ 2.9 3.2 2.8 3.2 3.1 3.3 2.6 2.8 3.2 2.6 3 m_{µµ.1}[GeV] m_{uu.2} [GeV] m,, [GeV]

Ordered (left to right) by decreasing pair pT

Defined to maximize the signal purity and the detector acceptance and efficiency.

For all muons	$p_{\rm T} > 3.5 { m GeV}$ for $ \eta < 1.2$ $p_{\rm T} > 2.5 { m GeV}$ for $1.2 < \eta < 2.4$
For all J/ ψ mesons	$p_{ m T} > 6 { m GeV} { m and} y < 2.4$ $2.9 < m_{\mu^+\mu^-} < 3.3 { m GeV}$

Yield is extracted using a 3D unbinned extended maximum likelihood fit:

- → Signal: Gaussian with resolution fixed from MC.
- → Background: exponential

Signal yield 5.0 ± 2.0 events

Significance exceeding 5σ

Observation of triple J/ ψ meson production

Cross section calculation and systematic uncertainties

$$\sigma(\mathrm{pp} \rightarrow \mathrm{J}/\psi \,\mathrm{J}/\psi \,\mathrm{J}/\psi \,\mathrm{X}) = N_{\mathrm{sig}}^{3\mathrm{J}/\psi} / (\epsilon \,\mathcal{L}_{\mathrm{int}} \,\mathcal{B}_{\mathrm{J}/\psi \rightarrow \mu^{+}\mu^{-}}^{3})$$

Signal yield 5.0 ± 2.0 events

L total integrated luminosity 133 fb-1

ε total efficiency coming from:

- 1) trigger 0.84% (MC)
- 2) Reconstruction*muonID 0.78% (data driven[<u>link</u>])

Dimuon branching fraction: B³(J/ $\psi \rightarrow \mu\mu$) = (5.961% ± 0.033%)³

2020 12 12	
Source	Relative uncertainty
J/ ψ meson signal shape	0.8%
Dimuon continuum background shape	3.4%
Muon reconstruction and identification	1.0%
Trigger efficiency	3.4%
MC sample size	3.0%
Integrated luminosity	1.6%
Dimuon branching fraction	1.7%
Total	6.2%

$$\sigma(pp \to J/\psi J/\psi X) = 272^{+141}_{-104} \text{ (stat)} \pm 17 \text{ (syst) fb}$$

The total uncertainty is dominated by the statistical term

Observation of triple J/ψ meson production

Prompt and nonprompt J/ψ mesons

A classification of prompt and non-prompt events is attempted. Prompt J/ ψ mesons are defined as those having J/ ψ proper decay length below 60 μ m.

- 2 events 2np+1p
- 1 event 1np+2p
- 2 event 3np
- 1 event 3p

Some kinematic properties of the J/ψ candidates

Event	$m^{J/\psi,1}$ (GeV)	$m^{\mathrm{J}/\psi,2}(\mathrm{GeV})$	$m^{\mathrm{J}/\psi,3}(\mathrm{GeV})$	$L^{\mathrm{J}/\psi,1}$ (mm)	$L^{\mathrm{J}/\psi,2}~\mathrm{(mm)}$	$L^{J/\psi,3}$ (mm)
1	3.08	3.10	3.07	1.77	0.24	-0.01
2	3.15	3.06	3.09	0.05	0.36	0.02
3	3.10	3.14	3.11	-0.04	0.03	0.05
4	3.07	3.03	3.09	0.48	0.81	0.82
5	3.12	3.14	3.14	-0.25	0.13	-0.02
6	3.06	3.17	2.94	0.11	0.38	0.61

Observation of triple J/ ψ meson production

Discussion

 \triangleright

> Cross section to produce two charmonium mesons in a DPS can be written as

$$\sigma_{\text{DPS}}^{\text{pp}\to\psi_{1}\psi_{2}+X} = \left(\frac{\mathfrak{m}}{2}\right) \frac{\sigma_{\text{SPS}}^{\text{pp}\to\psi_{1}+X} \sigma_{\text{SPS}}^{\text{pp}\to\psi_{2}+X}}{\sigma_{\text{eff},\text{DPS}}} \qquad \text{where m=1 for } \psi_{1}=\psi_{2} \text{ , and m=2 if } \psi_{1}\neq\psi_{2}$$

Similar for TPS

$$\sigma_{\text{TPS}}^{\text{pp}\to\psi_1\psi_2\psi_3+X} = \left(\frac{\mathfrak{m}}{3!}\right) \frac{\sigma_{\text{SPS}}^{\text{pp}\to\psi_1+X} \sigma_{\text{SPS}}^{\text{pp}\to\psi_2+X} \sigma_{\text{SPS}}^{\text{pp}\to\psi_3+X}}{\sigma_{\text{eff},\text{TPS}}^2}$$

where m=1,3,6 depending on whether all three, two, or none of the ψ_i states are identical

- Theoretical total triple-J/ ψ cross section expected to correspond to the sum of the contributions from SPS, DPS, and TPS processes: $\sigma_{\text{tot}}^{3J/\psi} = \sigma_{\text{SPS}}^{3J/\psi} + \sigma_{\text{DPS}}^{3J/\psi} + \sigma_{\text{TPS}}^{3J/\psi}$ $= \left(\sigma_{\text{SPS}}^{3p} + \sigma_{\text{SPS}}^{2p1np} + \sigma_{\text{SPS}}^{1p2np} + \sigma_{\text{SPS}}^{3np}\right)$ $+ \left(\sigma_{\text{DPS}}^{3p} + \sigma_{\text{DPS}}^{2p1np} + \sigma_{\text{DPS}}^{1p2np} + \sigma_{\text{DPS}}^{3np}\right) + \left(\sigma_{\text{TPS}}^{3p} + \sigma_{\text{TPS}}^{2p1np} + \sigma_{\text{TPS}}^{3np}\right)$
- $\begin{array}{l} \blacktriangleright \quad \text{With the DPS and TPS triple-J/\psi cross sections derivable from the single- and double-J/\psi SPS cross sections:} \\ \sigma_{\text{DPS}}^{3J/\psi} = \frac{\mathfrak{m}_1 \left(\sigma_{\text{SPS}}^{2p} \sigma_{\text{SPS}}^{1p} + \sigma_{\text{SPS}}^{2p} \sigma_{\text{SPS}}^{1p1np} + \sigma_{\text{SPS}}^{1p1np} \sigma_{\text{SPS}}^{1np} + \sigma_{\text{SPS}}^{1p} \sigma_{\text{SPS}}^{2np} + \sigma_{\text{SPS}}^{2np} \sigma_{\text{SPS}}^{2np} + \sigma_{\text{SPS}}^{2np}$

Observation of triple J/ψ meson production

Discussion

→ Using 8 theoretical SPS cross sections from HELACONIA(LO,NLO*)+data,PYTHIA8, and G5@NLO+PYTHIA8:

SPS single-J/ ψ production		SPS double-J/ ψ production		SPS triple-J/ ψ production				
HO(DATA)	mg5nlo+py8	HO(NLO*)	HO(LO)+PY8	mg5nlo+py8	HO(LO)	HO(LO)+PY8	HO(LO)+PY8	MG5NLO+PY8
$\sigma_{ m SPS}^{ m 1p}$	$\sigma_{ m SPS}^{ m 1np}$	$\sigma^{ m 2p}_{ m SPS}$	$\sigma_{ m SPS}^{ m 1p1np}$	$\sigma_{ m SPS}^{2np}$	$\sigma^{ m 3p}_{ m SPS}$	$\sigma_{ m SPS}^{ m 2p1np}$	$\sigma_{ m SPS}^{ m 1p2np}$	$\sigma_{ m SPS}^{ m 3np}$
$570\pm57\mathrm{nb}$	$600^{+130}_{-220}\mathrm{nb}$	$40^{+80}_{-26}\mathrm{pb}$	$24^{+35}_{-16}{ m fb}$	$430^{+95}_{-130}\mathrm{pb}$	< 5 ab	$5.2^{+9.6}_{-3.3}{ m fb}$	$14^{+17}_{-8}{ m ab}$	$12\pm4\mathrm{fb}$

- → Nonprompt cross sections scaled to NNLO (x1.15). Theoretical uncertainties dominated by scale (then PDF).
- → Using the sum equation of previous slide, assuming $\sigma_{\text{eff,TPS}} = (0.82 \pm 0.11) \sigma_{\text{eff,DPS}}$ [link], the DPS effective cross section can be extracted requiring that total triple-J/ ψ cross-section matches the measured value:

Process:	3 prompt	2 prompt+1 nonprompt	1 prompt+2 nonprompt	3 nonprompt	Total
$\sigma_{\rm SPS}^{3{\rm J}/\psi}$ (fb)	< 0.005	5.7	0.014	12	18
$N_{ m SPS}^{ m 3J/\psi}$	0.0	0.10	0.0	0.22	0.32
$\sigma_{ m DPS}^{3{ m J}/\psi}$ (fb)	8.4	8.9	90	95	202
$N_{ m DPS}^{ m 3J/\psi}$	0.15	0.16	1.65	1.75	3.7
$\sigma_{ m TPS}^{ m 3J/\psi}$ (fb)	6.1	19.4	20.4	7.2	53
$N_{ m TPS}^{ m 3J/\psi}$	0.11	0.36	0.38	0.13	1.0
$\sigma_{ m tot}^{ m 3J/\psi}$ (fb)	15	34	110	114	272
$N_{ m tot}^{ m 3J/\psi}$	0.3	0.6	2.0	2.1	5.0

Observation of triple J/ψ meson production

Discussion

- → Derived $\sigma_{\text{eff,DPS}}$ is found to be $\sigma_{\text{eff,DPS}} = 2.7^{+1.4} (exp)^{+1.5} 1.0 (theo)$ mb
- → The expected contributions from SPS, DPS, TPS processes amount to about:
 - SPS: 6%, DPS: 74%, TPS: 20%
 - Confirming that triple-J/ψ is an excellent process to study DPS/TPS

Derived $\sigma_{\rm eff,DPS}$ value is consistent with the world-data of effective DPS cross sections obtained previously from diquarkonium production measurements:

 $\sigma_{\rm eff,DPS}$ ~~3-10 mb

but not consistent with extractions from processes with jets, photons, and W bosons:

 $\sigma_{\rm eff,DPS}$ ~~10-20 mb

Speculative educated guesses: it is because quarkonia are produced mostly in gluon-gluon scatterings, whereas mostly quarks intervene in the production of EW bosons.

Observation of triple J/ ψ meson production

Summary

First observation of triple J/ψ meson production

First experimental study of the simultaneous production of three particles in n-parton scatterings

$$\sigma(\text{pp} \rightarrow J/\psi J/\psi X) = 272^{+141}_{-104} \text{ (stat)} \pm 17 \text{ (syst) fb}$$

Extraction of
$$\sigma_{eff,DPS} = 2.7^{+1.4}_{-1.0}(exp)^{+1.5}-_{1.0}(theo)$$
 mb

Novel input for further theoretical and experimental progress in understanding the n-parton scatterings dynamics.

Important step in a half-a-century old quest towards understanding the proton structure.

Observation of triple J/ ψ meson production

Backup slides

Observation of triple J/ψ meson production

Event display

CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-18 16:07:04.866439 GMT Run / Event / LS: 305237 / 1277785997 / 682

Event display of a proton-proton collision with 6 muons (red lines) produced in the decays of 3 different J/ψ mesons, as observed in the CMS detector.

Physics Briefing

Observation of triple J/ψ meson production

Kinematic properties of the J/ψ candidates

Event	$m^{J/\psi,1}$ (GeV)	$m^{\mathrm{J}/\psi,2}(\mathrm{GeV})$	$m^{\mathrm{J}/\psi,3}(\mathrm{GeV})$	$L^{\mathrm{J}/\psi,1}$ (mm)	$L^{J/\psi,2}$ (mm)	$L^{\mathrm{J}/\psi,3}$ (mm)
1	3.08	3.10	3.07	1.77	0.24	-0.01
2	3.15	3.06	3.09	0.05	0.36	0.02
3	3.10	3.14	3.11	-0.04	0.03	0.05
4	3.07	3.03	3.09	0.48	0.81	0.82
5	3.12	3.14	3.14	-0.25	0.13	-0.02
6	3.06	3.17	2.94	0.11	0.38	0.61
Event	$p_{\mathrm{T}}^{\mathrm{J}/\psi,1}$ (GeV)	$p_{\mathrm{T}}^{\mathrm{J}/\psi,2}$ (GeV)	$p_{\mathrm{T}}^{\mathrm{J}/\psi,3}$ (GeV)	$y^{\mathrm{J}/\psi,1}$	$y^{\mathrm{J}/\psi,2}$	$y^{\mathrm{J}/\psi,3}$
1	17.64	17.50	8.68	-2.25	-0.39	1.53
2	91.50	54.04	11.81	1.99	0.81	-0.71
3	11.29	10.29	6.98	-0.50	-0.37	-1.64
4	15.46	10.61	7.84	-0.83	-2.24	-1.78
5	8.67	7.71	6.75	2.03	-1.14	-1.87
6	60.70	19.09	17.03	1.59	2.29	1.58
	- / ·	7/1 0	7/1.0			
Event	$\phi^{J/\psi,1}$	$\phi^{J/\psi,2}$	$\phi^{J/\psi,3}$	-		
1	-1.98	2.06	-1.56			
2	2.60	-2.14	-0.38			
3	-0.87	-1.50	0.66			
4	1.00	-2.07	-1.77			
5	-1.77	1.99	2.91			
6	-1.98	-1.74	-2.17			

Dimuon invariant mass, proper decay-length, transverse momentum, rapidity, and azimuthal angle of each of the three J/ ψ candidates measured in the six triple-J/ ψ events passing our selection criteria.

Observation of triple J/ψ meson production

CMS experiment

CMS has accumulated ~5 fb⁻¹ at 7 TeV, ~20 fb⁻¹ at 8 TeV, and ~160 fb⁻¹ at 13 TeV of data for physics

Excellent detector for quarkonium physics

Observation of triple J/ ψ meson production

Jhovanny Andres Mejia Guisao

ICHEP2022