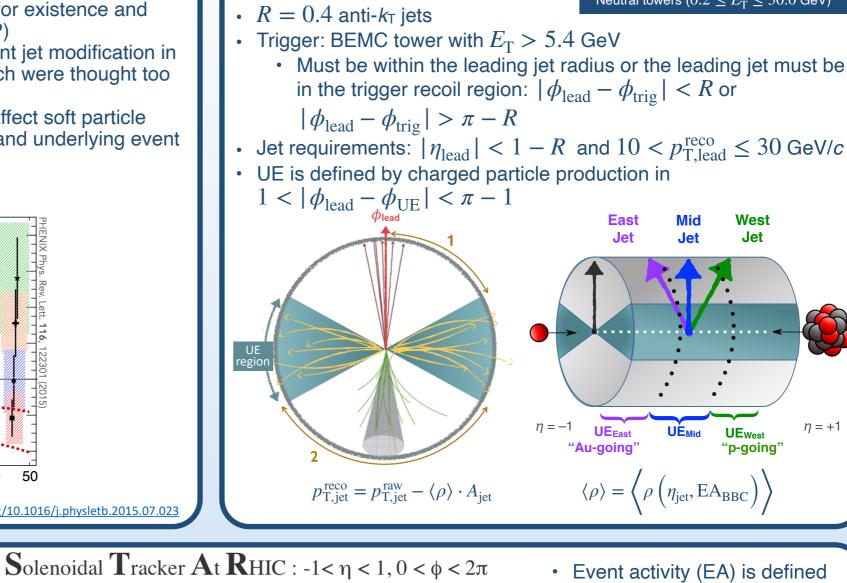

Measurements of jet and soft activity in $\sqrt{s_{\rm NN}} = 200 \, {\rm GeV}$ p+Au collisions at STAR



Veronica Verkest (veronica.verkest@wayne.edu), Wayne State University, for the STAR Collaboration

Abstract: We present STAR measurements of long-range correlations between jets and underlying event (UE) in $\sqrt{s_{\rm NN}} = 200$ GeV p+Au collisions at STAR, which will inform open questions regarding jets and hard scatterings. We also investigate the event activity (EA) dependence of high- $p_{\rm T}$ hadron and jet properties—including fully corrected ungroomed and SoftDrop groomed jet substructure observables-to study the impact of initial and final state effects. Introduction Jets and UE measurement method Charged tracks ($0.2 \le p_{\rm T} \le 30.0 \text{ GeV/}c$) Neutral towers ($0.2 \le E_{\rm T} \le 30.0 \text{ GeV}$) Jet quenching is commonly used to probe for existence and • R = 0.4 anti- $k_{\rm T}$ jets properties of the quark-gluon plasma (QGP) • Trigger: BEMC tower with $E_{\rm T} > 5.4 {\rm ~GeV}$ Yet ATLAS and PHENIX observed significant jet modification in

- small systems, such as *p*+A collisions, which were thought too small a system for QGP formation
- How does the hard scattering in an event affect soft particle production, specifically event activity (EA) and underlying event (UE) at mid-rapidity?

- Barrel Electromagnetic Calorimeter (BEMC)
 - + $0.2 \leq E_{\mathrm{T}} \leq 30.0 \ \mathrm{GeV}$
 - $\gamma, \pi^0, e^{\pm}, \dots |\eta| < 1,$

Experiment and event activity

• $0 < \phi < 2\pi$

Time Projection Chamber (TPC)

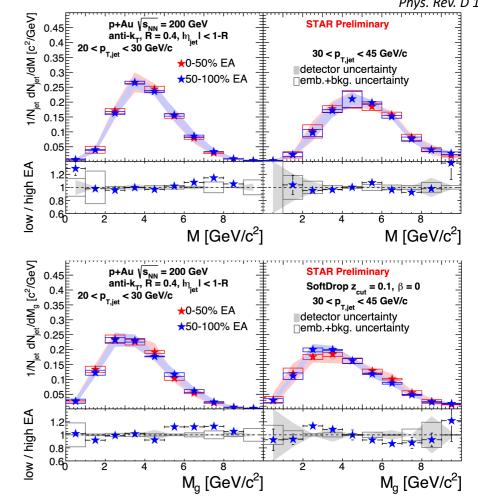
- Charged tracks, $|\eta| < 1$
- $0.2 \le p_{\rm T} \le 30.0 \, {\rm GeV/c}$
- $0 < \phi < 2\pi$

Barrel Electro Magnetic Calorimeter Magnet Time Of Flight Time Projection Chamber • Beam Beam Counter

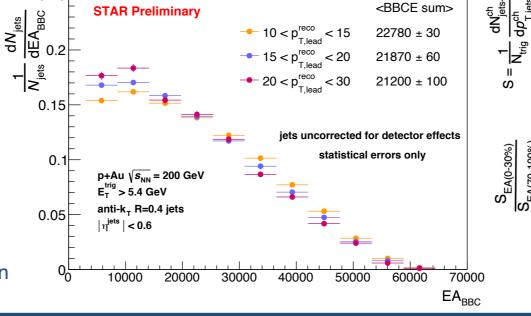
- by the distribution of the inner BBC signal sum in the Augoing direction $(-5.2 < \eta < -3.3)$
- Event activity can be related to impact parameter, and therefore is used for classifying the centrality
 - Low EA: 70-90% High EA: 0-30%

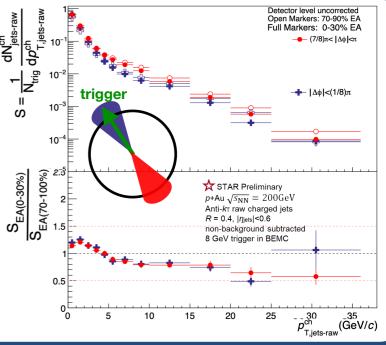

Beam Beam Counter (BBC)

- Scintillator detector
- East inner BBC: $-5.2 < \eta < -3.3$


Jet and UE correlation

- UE charged particle multiplicity is higher in events with a larger EA as measured by the Au-going BBC ($-5.2 < \eta < -3.3$)
- · UE is larger in the Au-going direction, and does not have a significant dependence on leading jet $p_{\rm T}$


Jet mass as a function of EA


- M =
- · No significant change of the jet mass with EA
 - · No signs of medium-induced modification to jet mass
- Consistent with QCD predictions and jet mass measured in p+p Phys. Rev. D 104, 052007

Activity-dependent jet yields

- Anti-correlation between EA_{BBC} and leading jet $p_{\rm T}$
 - Events binned by higher (lower) jet $p_{\rm T}$ have a lower (higher) average EA_{BBC}, naively classified as more peripheral (central)
- Yield of semi-inclusive high- $p_{\rm T}$ jets per charged hadron trigger is suppressed in high EATPC events relative to low EATPC events, where EA_{TPC} is the charged UE $p_{\rm T}$ density at mid-rapidity ($|\eta| < 1$)
 - Similarly for EA_{BBC} (not shown)
- The suppression is comparable for jets on the trigger and recoil side

Conclusion

EA correlated with UE multiplicity and anti-correlated with high- Q^2 jets despite large separation in rapidity Dependence of soft particle production (EA and UE) on the initial hard jet scattering Semi-inclusive jet spectra suppressed at both high EA_{BBC} and high EA_{TPC} Jet mass and groomed jet mass independent of EA-no signs of medium-induced jet mass modification • Indicates EA vs. Q^2 correlations from early time effects, not jet quenching Jet quenching disfavored by STAR jet measurements in p+Au collisions

0.25

