

Absolute neutrino mass as the missing link to the dark sector

T. de Boer*, M. Klasen, C. Rodenbeck, S. Zeinstra

July 07, 2022

Based on: Thede de Boer et al. (2020). "Absolute neutrino mass as the missing link to the dark sector". In: Phys. Rev. D 102.5, p. 051702. arXiv: 2007.05338 [hep-ph]

Scotogenic model

- Open questions in the SM
 - Dark matter
 - Neutrino masses
- Model proposed by E. Ma (2006) (scotos: Greek for darkness)
- Dark matter generates neutrino masses
- Two viable dark matter candidates (fermion singlet & scalar doublet)

Field	Generation	Spin	$U(1)_Y \times SU(2)_L \times SU(3)_c$	\mathbb{Z}_2
η	1	0	$(\frac{1}{2}, 2, 1)$	-1
N	3	$\frac{1}{2}$	(0,1,1)	-1
SM particles	-	-	-	+1

$$-\lambda_3(H^{\dagger}H)(\eta^{\dagger}\eta) - \lambda_4(H^{\dagger}\eta)(\eta^{\dagger}H) - \frac{\lambda_5}{2} \left[(H^{\dagger}\eta)^2 + \text{h.c.} \right]$$

Neutrino loop can be evaluated

 $\mathcal{L} \supset \mathbf{y}_{i\alpha} (\eta^{\dagger} I_{\alpha}) N_i + \text{h.c.}$

Part of the Lagrangian

$$(M_{\nu})_{\alpha\beta} \approx 2 \frac{\lambda_{5}}{\lambda_{5}} \langle H^{0} \rangle \sum_{i=1}^{3} \frac{y_{i\alpha} y_{i\beta}}{32\pi^{2} (m_{R,I}^{2} - m_{N_{i}}^{2})} \left[1 + \frac{m_{N_{i}}^{2}}{m_{R,I}^{2} - m_{N_{i}}^{2}} \ln \left(\frac{m_{N_{i}}^{2}}{m_{R,I}^{2}} \right) \right]$$

► Majorana Neutrino masses violate Lepton number $\Rightarrow \lambda_5$ naturally small ('t Hooft)

Yukawa couplings

Casas-Ibarra

• Invert Neutrino mass formula $y = \sqrt{\Lambda}^{-1} R \sqrt{\hat{m_{\nu}}} U_{\text{PMNS}}^{\dagger}$

$$\Lambda_{i} = 2 \frac{\lambda_{5}}{\lambda_{5}} \langle H^{0} \rangle \frac{m_{N_{i}}}{32\pi^{2}(m_{R,I}^{2} - m_{N_{i}}^{2})} \left[1 + \frac{m_{N_{i}}^{2}}{m_{R,I}^{2} - m_{N_{i}}^{2}} \ln \left(\frac{m_{N_{i}}^{2}}{m_{R,I}^{2}} \right) \right]$$

Figure: Diagrams leading to LFV.

Numerical calculation

- Random scan of the parameter space for fermion dark matter
- Casas-Ibarra

• Invert Neutrino mass formula $\mathbf{y} = \sqrt{\Lambda}^{-1} R \sqrt{\hat{m_{\nu}}} U_{\text{PMNS}}^{\dagger}$

$$\Lambda_{i} = 2 \frac{\lambda_{5}}{\lambda_{5}} \langle H^{0} \rangle \frac{m_{N_{i}}}{32\pi^{2}(m_{R,I}^{2} - m_{N_{i}}^{2})} \left[1 + \frac{m_{N_{i}}^{2}}{m_{R,I}^{2} - m_{N_{i}}^{2}} \ln \left(\frac{m_{N_{i}}^{2}}{m_{R,I}^{2}} \right) \right]$$

- Use Neutrino parameter as input to calculate Yukawa couplings
- ▶ SPheno 4.0.3¹
 - Particle masses
 - Lepton Flavor Violation (LFV) branching ratio
- ▶ MICROMEGAS 5.0.8²
 - Dark matter relic density
 - Exclude coannihilation

¹Werner Porod (2003); W. Porod and Staub (2012)

²Bélanger et al. (2018)

Figure: Normal hierarchy

Conclusion

- Scotogenic model
 - Scalar doublet and fermion singlet dark matter
 - Neutrino masses at one loop
- Dark matter und Neutrino masses intrisically connected
- Relic density constraint yields a relation between $m_{
 u}$ and λ_5

Thank you for your attention

Thank you for your attention

Any Questions?

Backup slides

Coannihilations

