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Abstract
We reassess anomalous triple gauge couplings in the light of the recent (g − 2)µ

measurement at FNAL, the new lattice theory result of (g − 2)µ and the updated
measurements of several B-decay modes. In the framework of SMEFT, three
bosonic dimension-6 operators are invoked to parametrize physics beyond the Stan-
dard Model and their contributions to such low-energy observables computed. Con-
straints on the corresponding Wilson coefficients are then derived from fits to the
current experimental bounds on the observables and compared with the most strin-
gent ones available from the 13 TeV LHC data in the W+W− and W±Z production
channels.

Introduction
• The recent FNAL result of the anomalous magnetic moment of the muon, namely aµ ≡ [(g−2)/2]µ confirms the previous one

from BNL measurement and places a combined discrepancy of 4.2σ deviation from the SM when using dispersive techniques
for the hadronic vacuum polarisation.

• The use of Lattice-QCD results by the BMW collaboration to calculate the same decreases the discrepancy to a mere 2σ level.

• Also of interest are B physics observables, where neutral current b → sll transitions have been showing persistent discrepancy
from the SM values in recent years with the most recent result being of the RK anomaly and BR(Bs → µ+µ−).

• In the present paper, we reexamine possible anomalous self-interactions of the electroweak gauge bosons in the light of these
experiments. Concentrating on three particular dimension-6 terms in the SMEFT Lagrangian that lead to anomalous triple
gauge boson couplings (TGCs), we evaluate the corresponding one-loop contributions to both (g − 2)µ and (g − 2)e, another
observable that shows a discrepancy, albeit smaller as well as certain electroweak precision measurements.

• Assuming that the aforementioned operators are the leading ones, we show that radiative and rare B and K decays such as
B → Xsγ, Bs → µ+µ−, B → Xsℓ

+ℓ−, B → K(∗)µ+µ−, Bs → ϕµ+µ−, K → πνν̄ provide very important constraints.

• Even though the preceding assumption seems quite restrictive at the outset, we find that the ensuing results have interesting
implications nonetheless for certain classes of new physics models.

• The most famous of these are Randall-Sundrum-like scenarios with bulk fermions and bosons. The localizations of the light
fermions as dictated by the warping, ensures that the overlap integrals for the KK-gauge bosons with the SM fermions are
much smaller than those with the SM bosons. This, immediately, leads to an hierarchy in the Wilson coefficients as examined
in this analysis.

Effective Lagrangian for the Gauge Sector
• Taking Λ to be the characteristic scale of the UV complete theory, the effective lagrangian at dimension-6 can be written as:
L = LSM +
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• The largest imprint on the observables of interest from the bosonic sector are provided by:

OWWW =
cWWW

Λ2
Tr[Ŵ ν
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• These operators give rise to anomalous triple gauge couplings:
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with V ≡ γ, Z. Here, gWWγ = e, gWWZ = e cot θ (with θ being the Weinberg angle) and the field strengths correspond to
only the abelian part.

• Within the SM, we have gV1 = κV = 1, ∆gγ1 = 0 and λV = 0. In other words, ∆κV ≡ κV − 1, ∆gZ1 ≡ gZ1 − 1 and λV suitably
define the anomalous couplings, and, post symmetry-breaking, can be related to the Wilson coefficients cW , cB and cWWW as
follows:
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In the above and in the following sections we use the notation sθ = sin θ and cθ = cos θ.

Contribution to various observables

• At one loop the interaction lagrangian and the expression for the muon anomalous magnetic moment is:
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• The anomalous gauge couplings can also contribute to various loop-mediated flavour changing neutral current hadronic de-
cays through a multitude of effective operators such as the electromagnetic dipole or semi-leptonic vector and axial-vector
ones, namely
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where L and R denote the chirality of the fermionic fields, σαβ = i[γα, γβ]/2 and F αβ is the electromagnetic field tensor. The
∆B,∆S = 1 operator is traditionally written as
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with C7, C9 and C10 being the corresponding Wilson coefficients that factorise the short distance physics.

• While the photonic diagram thus generated mirrors that for ∆aanomµ and is only logarithmically divergent, for the Z vertex, the
anomalous contribution from an individual quark loop is quadratically divergent. However, thanks to the GIM mechanism,
the quadratically divergent pieces (as with any other term independent of the internal quark mass) cancel, leaving behind only
a logarithmic divergence. Of these, the top-quark contribution dominates overwhelmingly and we can fairly approximate
(x ≡ m2

t/m
2
W )

Ci ≈ (Ci)SM +

[
VtbV

∗
ts

m2
W

Λ2
ln

(
Λ2

m2
W

)]
∆Ci

∆C7 =
−(cB + cW )

8 (x− 1)2

[
2x+

x3 − 3x2

(x− 1)
lnx

]
+

3g2 cWWW

8

[
x2 + x

(x− 1)2
− 2x2 lnx

2 (x− 1)3

]
,

∆C9 =
−(cB + cW )

8
x +

3cW
16

1− 4s2θ
s2θ

x+
3g2 cWWW

2

[
x− 3x2

2 (x− 1)2
+

x3 lnx

(x− 1)3

]
, ∆C10 =

−3cW
16s2θ

x .

• The presence of the anomalous gauge couplings also leads to a modification in the electroweak precision variables, whether
these be the oblique corrections or the fermion-gauge couplings. Of particular importance is the Zbb̄ coupling and the ρ
(equivalently, T ) parameter. The effective Zbb̄ vertex may be parametrized as
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are the SM values of the couplings.

• One part of the corrections to these originates from the wave-function renomalization of the Z boson due to a one-loop oblique
correction ΠZZ and is given by
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• The second contribution emanates from the direct one-loop correction to the vertex. Applicable only for the left-handed
coupling given by
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Results
• Some of the important experimental values of the observables pertaining to our analysis are:

Current limits
Observable(F) 1σ limit

∆aDISP
µ (WP20) 251± 59× 10−11

∆aBMW
µ (BMW) 107± 69× 10−11

∆C7 −0.03± 0.03
∆C9µµ −1.03± 0.13
∆C10µµ 0.41± 0.23
∆C9ee 0.70± 0.60
∆C10ee −0.50± 0.50
δgL 0.0016± 0.0015
δgR 0.019± 0.007

Calculation Descriptor (cB, cW , cWWW )/Λ2 χ2

[TeV−2]
WP20 SM (0,0,0) 101.76

2-param B.F. (41.78,−1.52, 0) 29.75
3-param B.F. (37.99,−1.48,−15.20) 28.29

BMW SM (0,0,0) 86.121
2-param B.F. (38.64,−1.67, 0) 25.383
3-param B.F. (38.58,−1.67,−0.29) 25.382

• Using the expressions for the observables and the corresponding experimental values, we can plot:

• The ∆aµ-allowed band, as calculated using the WP20 result does not include the SM point, reflecting the fact that the data
does not agree with the SM value at the 2σ level. For the lattice result (BMW), though, it is indeed included (showed by
purple band).

• The band for ∆ae sits on the opposite side of the origin, owing to the sign of the discrepancy. However, being suppressed by
m2

e, the required sizes of the Wilson coefficients are too large to be meaningful.

• δgL has a relatively weaker dependence on cB than on cW leading to the slightly tilted band. δgR receives a small correction
only from the correction to the Z self-energy, and the ensuing bounds are too weak to be relevant.

• Since ∆C7, just like ∆aµ, parametrizes the coupling of a fermion current to the photon, both are proportional (in the absence
of a nonzero cWWW ) to the combination (cB + cW ) and the ensuing bands are parallel to each other.

• ∆C10, being dependent on cW alone, leads to a relatively narrow vertical band in this plane. Most restrictive of all the observ-
ables, the difference in its value as calculated from the electronic and muonic channels exert opposite pulls leading to the two
parallel bands. Although both bands overlap with the collider limit, the muonic one has a greater sensitivity to cW and, hence,
its partial overlap presents a comparatively stronger constraint on the allowed region, favouring negative values for cW . This
leads to an interesting possibility wherein ∆C10 is the dominant flavour-blind Wilson coefficient parametrizing new physics
effects in FCNC B decays. A sizable range of cW values compatible with the LHC limits exists that could, then, ameliorate the
discrepancies in the aforementioned B decay observables (excluding LFU ones). Not contributing to ∆C10, a similar-sized cB
would lead to only tiny changes in the low-energy observables and would be primarily constrained by collider experiments.

• Similar to the preceding observable, the opposing experimental numbers for ∆C9 from the two (e and µ) channels lead to two
bands.

• The χ2 function for the combined fit to these observables can be defined as:
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• The best-fit point would then be given by the minimum of the χ2 and parameter points leading to χ2 ≤ χ2
min + δχ2 being

inseparable from the best-fit point at a confidence level determined by δχ2.

• The first two plots in the figure below shows the χ2 analysis for the BMW case with Λ = 2 and Λ = 10 TeV respectively.

• The third plot represents estimated projections in future when (a) Same deviation as BMW but with errors reduced by four
times represented by blue ellipse, and (b) assuming no deviation from SM and errors reduced by four times represented by
orange ellipse.

Summary and Outlook
• Our study indicates that the limits on low-energy observables, taken individually, lead to weak bounds on the bosonic SMEFT

Wilson coefficients when compared with the existing LHC limits, except for the bounds on cW/Λ2 emanating from the limits
on ∆C10 which are comparable and consistent with the collider results.

• On the other hand, a global fit in the (cW/Λ2, cB/Λ
2) plane, while imposing significantly stronger constraints on the WCs,

exhibits disagreement with the LHC results.

• One has to note that the assertion of the 1-loop contributions being at most logarithmically divergent is based on the as-
sumption that all higher divergences are cancelled by contributions from higher dimensional operators. In the event that such
cancellations are inexact, the residual contributions, of quadratic (or higher) order in the cutoff Λ may lead to substantially
stronger constraints on the WCs.

• The LHC limits have used cross-sections that also include terms quadratic in the TGCs, whereas we consider contributions
to the concerned observables only upto a linear order in the same. Had we included quadratic contributions, we would have
obtained stronger bounds as well.

• Notwithstanding the caveats, the fact that ∆C10 also favours cW/Λ2 values that are very close to the origin indicates that any
explicit new physics model designed to explain the discrepancies (e.g., models which give rise to lepton flavour universality
violating (LFUV) or a combination of LFUV and LFU 4-fermion operators) should either induce OW with a suppressed (or
vanishing) Wilson coefficient or, otherwise, one must account for the WC cW generated therein, in addition to other parame-
ters, while performing a fit to the concerned observables.


