

THEORETICAL PROGRESS FOR HIGGS-BOSON PRODUCTION VIA VECTOR-BOSON FUSION ICHEP XLI 2022

Karlsruher Institut für Technologie

Xuan Chen ITP, IAP, Karlsruhe Institute of Technology Bologna, 8 July, 2022

- ► 10 years since Higgs Boson discovery
- ► A "bump" evolves to
 - > Higgs mass at 125.35 ± 0.14 GeV
 - Fiducial total cross section at $\pm 10\%$ precision
 - > Differential cross section at $\pm 10 \sim 25\%$ precision
 - Bosonic and 3rd generation fermionic couplings observed

4th July 2012 CERN main auditorium

2

- ► 10 years since Higgs Boson discovery
- ► A "bump" evolves to
 - > Higgs mass at 125.35 ± 0.14 GeV
 - Fiducial total cross section at $\pm 10\%$ precision
 - > Differential cross section at $\pm 10 \sim 25\%$ precision
 - ► Bosonic and 3rd generation fermionic couplings observed

4th July 2012 CERN main auditorium

- ► 10 years since Higgs Boson discovery
- ► A "bump" evolves to
 - > Higgs mass at 125.35 ± 0.14 GeV
 - Fiducial total cross section at $\pm 10\%$ precision
 - > Differential cross section at $\pm 10 \sim 25\%$ precision
 - Bosonic and 3rd generation fermionic couplings observed

Xuan Chen (KIT)

4th July 2012 CERN main auditorium

Xuan Chen (KIT)

Xuan Chen (KIT)

Xuan Chen (KIT)

- ► The Structure Function Approach (from NLO Han, Valencia, Willenbrock `92)
- ► Differential signature: → 'VBF cuts':
 - >2-jet tagging, m_{ii} > 350 GeV, Δy_{ii} > 4 etc.
- ► Use Simplified Template Cross Section bins to enhance signal sensitivity ► Measured via $H \rightarrow WW^* \rightarrow 2l2\nu$ with various VBF fiducial bins

LO contribution from VBF, VH and ggF

- ► The Structure Function Approach (from NLO Han, Valencia, Willenbrock `92)
- > Differential signature: \rightarrow 'VBF cuts':
 - >2-jet tagging, m_{ii} > 350 GeV, Δy_{ii} > 4 etc.
- ► Use Simplified Template Cross Section bins to enhance signal sensitivity ► Measured via $H \rightarrow WW^* \rightarrow 2l2\nu$ with various VBF fiducial bins

Example NLO and NNLO contribution to VBF (Bolzoni, Maltoni, Much, Zero `10) Theoretical progress for Higgs-boson production via vector-boson fusion *Xuan Chen (KIT)*

LO contribution from VBF, VH and ggF

- ► The Structure Function Approach (from NLO Han, Valencia, Willenbrock `92)
- ► Differential signature \rightarrow 'VBF cuts':
 - >2-jet tagging, m_{ii} > 350 GeV, Δy_{ii} > 4 etc.
- ► Use Simplified Template Cross Section bins to enhance signal sensitivity ► Measured via $H \rightarrow WW^* \rightarrow 2l2\nu$ with various VBF fiducial bins

Example NLO and NNLO contribution to VBF (Bolzoni, Maltoni, Much, Zero `10) Theoretical progress for Higgs-boson production via vector-boson fusion *Xuan Chen (KIT)*

LO contribution from VBF, VH and ggF

- ► The Structure Function Approach (from NLO Han, Valencia, Willenbrock `92)
- ► Differential signature \rightarrow 'VBF cuts':
 - >2-jet tagging, m_{ii} > 350 GeV, Δy_{ii} > 4 etc.
- ► Use Simplified Template Cross Section bins to enhance signal sensitivity > Measured via $H \rightarrow WW^* \rightarrow 2l2\nu$ with various VBF fiducial bins

Xuan Chen (KIT)

Theoretical progress for Higgs-boson production via vector-boson fusion

LO contribution from VBF, VH and ggF

- ► The Structure Function Approach (from NLO Han, Valencia, Willenbrock `92)
- ► Differential signature \rightarrow 'VBF cuts':
 - ► 2-jet tagging, $m_{ii} > 350$ GeV, $\Delta y_{ii} > 4$ etc.

Xuan Chen (KIT)

LO contribution from VBF, VH and ggF

STATE-OF-THE-ART PREDICTIONS

- ► Tools at NLO (+PS) fully differential QCD accuracy: ► VBFNLO Arnold, Bahr, Bozzi, Campanario, Englert et. Al. `08 + updates ► POWHEG Nason, Oleari `09, HERWIG Plätzer, Gieseke `11, aMC@NLO Frixione, Torrielli, Zaro `13 ► NNLO QCD correction in Structure Function Approach: ► Total cross section: VBF@NNLO Bolzoni, Maltoni, Moch, Zaro 10 ► Fully differential: proVBFH Cacciari, Dreyer, Karlberg, Salam, Zanderighi `15, NNLOJET Cruz-Martinez, Gehrmann, Glover, Huss `18, Nested-Soft-Collinear scheme Asteriadis, Caola, Melnikov, Röntsch `21, `22 ► N3LO QCD correction in Structure Function Approach (Total cross section): proVBFH Dreyer, Karlberg `16 ► NLO EW correction (Fully differential): Ciccolini, Denner, Dittmaier `07, HAWK Denner, Dittmaier et. al. `14 ► Non-factorizable correction: ► Gluon exchange: VBF@NNLO Bolzoni, Maltoni, Moch, Zaro `10, `12
 - ► VBF-ggF interference: Andersen, Binoth, Heinrich et. al. `07 Gluon induced: Harlander, Vollinga, Weber `08
 - Leading power correction: Liu, Melnikov, Penin `19, proVBFH Dreyer, Karlberg, Tancredi `20

Xuan Chen (KIT)

DIFFERENTIAL SIGNATURES AT NLO

 \blacktriangleright Differential signatures at NLO \rightarrow Reason of VBF cuts

- ► Compare ggF, VBF, VH and EW H+2j (VBF+VH+interference) Buckley, XC, Cruz-Martinez, Ferrario Ravasio et. al. 21
- ► ggF approx SM include finite top mass effects up to NLO Jones, Kerner, Luisoni 18, XC, Huss, Jones, Kerner et. al. 21

> VBF dominant in large m_{ii} , Δy_{ij} region

Differential NNLO QCD corrections in Structure Function Approach:

Buckley, XC, Cruz-Martinez, Ferrario Ravasio, Gehrmann, Glover, Höche, Huss, H See also: Jäger, Karlberg, Plätzer, Scheller, Zero `20 Xuan Chen (KIT) Theoretical progress for Higgs-boson production via vector-boson fusion

Differential NNLO QCD corrections in Structure Function Approach:

Xuan Chen (KIT)

See also: Jäger, Karlberg, Plätzer, Scheller, Zero `20 Theoretical progress for Higgs-boson production via vector-boson fusion

Differential NNLO QCD corrections in Structure Function Approach:

Theoretical progress for Higgs-boson production via vector-boson fusion

Inclusive N3LO QCD corrections in Structure Function Approach:

- ► Differential in H ► Inclusive in jets ► Very good convergence of pQCD expansion
- ► Extendable to fully differential N3LO

Plot by Asteriadis at LoopFest 2022

σ [pb] 100 PDF4LHC15_nnlo_mc $Q/2 < \mu_R, \mu_F < 2Q$ 10 LO NNLO 🔽 N3LO NLO 1.02 1.01 0.99 10 13 20 30 50 √s [TeV]

Xuan Chen (KIT)

DIFFERENTIAL SIGNATURES OF THE NON-FACTORIZABLE

- ► Non-factorizable contribution is colour and kinematic suppressed:
 - Eistmate gluon exchange via ekional approximation:
 - > Expand loop integral via $\xi^2 = (p_T^{jet})^2/s \ll 1$ (valid for VBF cuts)
 - > Keep leading power at $\xi^2 \rightarrow$ loop integral factorized from LO
 - > π^2 enhancement from Glauber gluons in transverse space Liu, Melnikov, Penin 19

DIFFERENTIAL SIGNATURES OF THE NON-FACTORIZABLE

- ► Non-factorizable contribution is colour and kinematic suppressed:
 - Eistmate gluon exchange via ekional approximation:
 - > Expand loop integral via $\xi^2 = (p_T^{jet})^2/s \ll 1$ (valid for VBF cuts)
 - > Keep leading power at $\xi^2 \rightarrow$ loop integral factorized from LO
 - > π^2 enhancement from Glauber gluons in transverse space Liu, Melnikov, Penin `19

Xuan Chen (KIT)

DIFFERENTIAL SIGNATURES OF THE NON-FACTORIZABLE

- ► Non-factorizable contribution is colour and kinema
 - Eistmate gluon exchange via ekional approximation:
 - > Expand loop integral via $\xi^2 = (p_T^{jet})^2/s \ll 1$ (valid for
 - ► Keep leading power at $\xi^2 \rightarrow$ loop integral factorized f
 - > π^2 enhancement from Glauber gluons in transverse spa

Liu, Melnikov, Penin `19

			19	5111	р	roVBFH	1 v1.2.	0	/	11 :	57 and
tic suppressed	5	-3.15	-3.15	-3.15	-3.15	-3.16	-3.15	-3.16	-3.18	-3.24	-3.18
		-3.34	-3.34	-3.34	-3.34	-3.34	-3.34	-3.45	-3.31	-3.39	-3.23
	4 -	-3.64	-3.64	-3.64	-3.58	-3.63	-3.49	-3.65	-3.30	-3.25	-3.21
		-3.68	-3.68	-3.68	-3.60	-3.51	-3.47	-3.63	-3.22	-3.27	-3.23
r VBF cuts)	₊ 3-	-3.94	-3.94	-3.93	-3.75	-3.52	-3.55	-3.62	-3.25	-3.25	-3.18
	yjj. ci	-3.88	-3.88	-3.89	-3.68	-3.47	-3.48	-3.55	-3.23	-3.22	-3.17
From LO		-3.96	-3.95	-3.87	-3.67	-3.48	-3.49	-3.54	-3.23	-3.21	-3.16
	12	-4.02	-4.03	-3.89	-3.66	-3.48	-3.49	-3.55	-3.23	-3.22	-3.16
ace	1.	-4.06	-4.12	-3.94	-3.69	-3.50	-3.51	-3.55	-3.23	-3.22	-3.16
	3.8	-3.96	-4.17	-4.00	-3.73	-3.52	-3.52	-3.56	-3.24	-3.22	-3.17
	0-	-3.55	-4.28	-4.07	-3.77	-3.54	-3.54	-3.57	-3.25	-3.23	-3.17
$\sqrt{s} = 13$ TeV, LO	83	ò	100	200	300	400 <i>m</i> _{ii. cut}	500 [GeV]	600	700	800	900
				(8	a) Fa	ctoris	able	corre	ction	s	
	5-	-0.39	-0.39	-0.39	-0.39	-0.39	-0.38	-0.37	-0.36	-0.34	-0.31
	18	-0.36	-0.36	-0.36	-0.36	-0.35	-0.34	-0.32	-0.29	-0.26	-0.23
	4 -	-0.33	-0.33	-0.33	-0.33	-0.31	-0.28	-0.25	-0.22	-0.19	-0.15
		-0.30	-0.30	-0.30	-0.29	-0.26	-0.22	-0.19	-0.15	-0.11	-0.08
	_ 3 -	-0.28	-0.28	-0.27	-0.24	-0.21	-0.16	-0.13	-0.09	-0.06	-0.03
	Vjj, cu	-0.25	-0.25	-0.24	-0.20	-0.16	-0.12	-0.08	-0.05	-0.02	0.01
	₫ ₂ .	-0.23	-0.23	-0.21	-0.16	-0.12	-0.08	-0.05	-0.02	0.00	0.03
σ^{LO}		-0.22	-0.21	-0.18	-0.14	-0.10	-0.06	-0.03	-0.01	0.02	0.04
	1-	-0.21	-0.20	-0.17	-0.13	-0.09	-0.05	-0.03	0.00	0.02	0.04
		-0.20	-0.19	-0.16	-0.12	-0.08	-0.05	-0.02	0.00	0.03	0.05
VBF cuts —	0-	-0.20	-0.19	-0.16	-0.11	-0.08	-0.05	-0.02	0.01	0.03	0.05
No cuts —	-	Ó	100	200	300	400 <i>mii.</i> cut	500 [GeV]	600	700	800	900
0.3 0.35 0.4 0.45 0.5				(b) N	Jon-fa	actor	isable	e corr	ectio	ns	

proVBFH Dreyer, Karlberg, Tancredi `20 Theoretical progress for Higgs-boson production via vector-boson fusion

$$\left(\frac{\sigma^{NNLO}}{\sigma^{LO}}-1\right)\%$$

DIFFERENTIAL SIGNATURES OF EW CORRECTION

- ► EW corrections to VBFH is available at NLO (HAWK Denner, Dittmaier, Kallweit, Mück `14)
- > Relative large for VBFH at 5 ~ 15 % for high p_T^H , m_{ii} (Sudakov log dominant)
- ➤ Combine EW and QCD predictions in STXS bins:

DIFFERENTIAL SIGNATURES OF EW CORRECTION

EW corrections to VBFH is available at NLO (HAWK Denner, Dittmaier, Kallweit, Mück `14)

► Relative large for VBFH at $5 \sim 15\%$ for high p_T^H, m_{jj} (Sudakov log dominant)

► Combine EW and QCD predictions in STXS bins:

 $\sigma_{VBF} = \sigma_{QCD}^{N^{n}LO}(1 + \delta_{EW}) + \sigma_{\gamma} \text{ with } (\delta_{EW} = \sigma_{EW}/\sigma_{QCD}^{LO})$

	STXS bin	$\sigma_{LO}(\text{fb})$	$(1 + \delta_{EW})$	$\sigma_{\gamma}(\mathrm{fb})$	Δ
×	$0 < m_{jj} \le 60$	6.67	0.981	0.081	0.
	$60 < m_{jj} \le 120$	601.78	0.938	7.440	0.
	$120 < m_{jj} \le 350$	540.59	0.981	6.567	0.
00	$350 < m_{jj} \le 700$	659.75	0.955	9.056	0.
$p_T^H \leq 2$	$700 < m_{jj} \le 1000$	318.83	0.937	4.820	0.
	$1000 < m_{jj} \le 1500$	275.94	0.921	4.481	0.
	$m_{jj} > 1500$	251.33	0.899	4.798	0.
00	$350 < m_{jj} \le 700$	45.72	0.927	0.807	0.
$p_T^H > 2$	$700 < m_{jj} \le 1000$	37.91	0.907	0.647	0.
	$1000 < m_{jj} \le 1500$	44.03	0.883	0.765	0.
	$m_{jj} > 1500$	55.99	0.851	1.165	0.

HAWK 3.0 to LHCHWVBF

Xuan Chen (KIT)

CHWVBF Buckley, XC, Cruz-Martinez, Ferrario Ravasio, Gehrmann et. Theoretical progress for Higgs-boson production via vector-boson fusion

•••••		
iducial		
Z		
0		
-		
51		
-		
N		
0 900		
0 900		

27

DIFFERENTIAL SIGNATURES OF EW CORRECTION

- EW corrections to VBFH is available at NLO (HAWK Denner, Dittmaier, Kallweit, Mück `14)
- ► Relative large for VBFH at $5 \sim 15\%$ for high p_T^H, m_{jj} (Sudakov log dominant)
- Combine EW and QCD predictions in STXS bins:

 $\sigma_{VBF} = \sigma_{QCD}^{N^{n}LO}(1 + \delta_{EW}) + \sigma_{\gamma} \text{ with } (\delta_{EW} = \sigma_{EW}/\sigma_{QCD}^{LO})$

			(
	STXS bin	$\sigma_{LO}(\text{fb})$	$(1 + \delta_{EW})$	$\sigma_{\gamma}(\mathrm{fb})$	Δ
52	$0 < m_{jj} \le 60$	6.67	0.981	0.081	0.
	$60 < m_{jj} \le 120$	601.78	0.938	7.440	0.
	$120 < m_{jj} \le 350$	540.59	0.981	6.567	0.
00	$350 < m_{jj} \le 700$	659.75	0.955	9.056	0.
$p_T^H \leq 2$	$700 < m_{jj} \le 1000$	318.83	0.937	4.820	0.
	$1000 < m_{jj} \le 1500$	275.94	0.921	4.481	0.
	$m_{jj} > 1500$	251.33	0.899	4.798	0.
00	$350 < m_{jj} \le 700$	45.72	0.927	0.807	0.
1 > 2	$700 < m_{jj} \le 1000$	37.91	0.907	0.647	0.
	$1000 < m_{jj} \le 1500$	44.03	0.883	0.765	0.
d	$m_{jj} > 1500$	55.99	0.851	1.165	0.
		-			

HAWK 3.0 to LHCHWVBF

Xuan Chen (KIT)

CHWVBF Buckley, XC, Cruz-Martinez, Ferrario Ravasio, Gehrmann et. Theoretical progress for Higgs-boson production via vector-boson fusion

	• •		
• • • •			
fiducia	1		
E.			
1			
50			
~			
***	X		
		1	
	-	1	
		1	
	-		
-			
-			
w			
w		1.1	
W			
W			
W			
W .			
W 0 90)0		
W 0 90)0		

► VBFH is the largest production channel to search for HVV anomalous couplings:

- ► CP even and odd anomalous couplings analysis at LO (Plehn, Rainwater, Zeppenfeld `02), NLO (Figy, Zeppenfeld `04, Hankele, Klämke, Zeppenfeld `06, Denner, Dittmaier, Kallweit, Muck `15)
- NNLO (Asteriadis, Caola, Melnikov, Röntsch '22)

> Dimensionless anomalous couplings for D6 operators in SMEFT: $c_{HVV}^{(1)}$, $c_{HVV}^{(2)}$, \tilde{c}_{HVV} , \tilde{c}_{HVV} $+\frac{p_1^2+p_2^2}{\Lambda^2}c_{HVV}^{(1)}\right)+\frac{2p_1^{\nu}p_2^{\mu}}{\Lambda^2}c_{HVV}^{(1)}-\tilde{c}_{HVV}(6\pi)\epsilon^{\mu\nu\rho\sigma}\frac{p_{1,\rho}p_{2,\sigma}}{\Lambda^2}$

$$= ig_{HVV}^{(SM)} \left[g^{\mu\nu} \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)} + \frac{m_H^2}{\Lambda^2} \right) \right]$$

• Use VBF cuts and assume $\Lambda = 1$ TeV with fix anomalous couplings in two scenarios:

Compatible fiducial cross section from LO to NNLO.

Xuan Chen (KIT)

Theoretical progress for Higgs-boson production via vector-boson fusion

► SMEFT analysis for general HVV anomalous couplings at LO (JHU generator `20), NLO (Madgraph5 `11),

► VBFH is the largest production channel to search for HVV anomalous couplings:

- ► CP even and odd anomalous couplings analysis at LO (Plehn, Rainwater, Zeppenfeld `02), NLO (Figy, Zeppenfeld `04, Hankele, Klämke, Zeppenfeld `06, Denner, Dittmaier, Kallweit, Muck `15)
- ► SMEFT analysis for general HVV anomalous couplings at LO (JHU generator `20), NLO (Madgraph5 `11), NNLO (Asteriadis, Caola, Melnikov, Röntsch '22)

$$H = ig_{HVV}^{p_1} = ig_{HVV}^{(SM)} \left[g^{\mu\nu} \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)} + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)} + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)} \right] \right]$$

• Use VBF cuts and assume $\Lambda = 1$ TeV with fix anomalous couplings in two scenarios:

Compatible fiducial cross section from LO to NNLO. (Asteriadis, Caola, Melnikov, Röntsch '22)

Xuan Chen (KIT)

Theoretical progress for Higgs-boson production via vector-boson fusion

> Dimensionless anomalous couplings for D6 operators in SMEFT: $c_{HVV}^{(1)}$, $c_{HVV}^{(2)}$, \tilde{c}_{HVV} (Helset, Martin, Trott `20) $\frac{p_1^2 + p_2^2}{\Lambda^2} c_{HVV}^{(1)} \right) + \frac{2p_1^{\nu} p_2^{\mu}}{\Lambda^2} c_{HVV}^{(1)} - \tilde{c}_{HVV} (6\pi) \epsilon^{\mu\nu\rho\sigma} \frac{p_{1,\rho} p_{2,\sigma}}{\Lambda^2} \bigg]$

► VBFH is the largest production channel to search for HVV anomalous couplings:

- ► CP even and odd anomalous couplings analysis at LO (Plehn, Rainwater, Zeppenfeld `02), NLO (Figy, Zeppenfeld `04, Hankele, Klämke, Zeppenfeld `06, Denner, Dittmaier, Kallweit, Muck `15)
- ► SMEFT analysis for general HVV anomalous couplings at LO (JHU generator `20), NLO (Madgraph5 `11), NNLO (Asteriadis, Caola, Melnikov, Röntsch '22)

> Dim

The mensionless anomalous couplings for D6 operators in SMEFT:
$$c_{HVV}^{(1)}$$
, $c_{HVV}^{(2)}$, \tilde{c}_{HVV} (Helset, Martin, Trot `20)
 $H = ig_{HVV}^{(SM)} \left[g^{\mu\nu} \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)} + \frac{p_1^2 + p_2^2}{\Lambda^2} c_{HVV}^{(1)} \right) + \frac{2p_1^{\nu} p_2^{\mu}}{\Lambda^2} c_{HVV}^{(1)} - \tilde{c}_{HVV} (6\pi) \epsilon^{\mu\nu\rho\sigma} \frac{p_{1,\rho} p_{2,\sigma}}{\Lambda^2} \right]$

• Use VBF cuts and assume $\Lambda = 1$ TeV with fix anomalous couplings in two scenarios:

Sce. A: $c_{HVV}^{(1)} = +1.5$, $c_{HVV}^{(2)} = -1.9$, $\tilde{c}_{HVV} =$ Sce. B: $c_{HVV}^{(1)} = -1.8$, $c_{HVV}^{(2)} = -0.1$, $\tilde{c}_{HVV} =$

Compatible fiducial cross section from LO to NNLO. Theoretical progress for Higgs-boson production via vector-boson fusion *Xuan Chen (KIT)*

	$\sigma_{ m fid}~(m fb)$	SM	Sce. A	Sce. B
+0.6;	LO	971^{-61}_{+69}	960_{+68}^{-61}	965_{+71}^{-63}
-1.5.	NLO	890^{+8}_{-18}	882^{+7}_{-17}	890^{+6}_{-17}
	NNLO	859^{+8}_{-10}	851^{+9}_{-8}	860^{+8}_{-8}

(Asteriadis, Caola, Melnikov, Röntsch '22)

Xuan Chen (KIT)

Differential observable at high precision resolve BSM scenarios:

Asteriadis, Caola, Melnikov, Röntsch '22 Theoretical progress for Higgs-boson production via vector-boson fusion

Xuan Chen (KIT)

CONCLUSION AND OUTLOOK

► We learned a lot in the past 10 years about VBFH production channel >LHC precision starts to reveal details of VFBH production channel. >STXS at stage 1.2 is mature for data analysis to improve extraction of signal. ► Rich phenomenology in various kinematic regions: SFA, eikonal approximation ... > Valuable data/cross sections away from VBF cuts can be understood. ► Fully differential NNLO QCD and NLO EW predictions available with N3LO QCD and QCD-EW mixed corrections desired in the future. > Parton Shower in good agreement with NNLO QCD, upgrade to N(N)LL in the future. > Precision tool could also be discovery tool to resolve BSM scenarios. > Many public tools available each with its own speciality in precision frontier. ► Collaboration via LHCHWVBF to combine state-of-the-art predictions for Run 3.

Xuan Chen (KIT)

CONCLUSION AND OUTLOOK

► We learned a lot in the past 10 years about VBFH production channel >LHC precision starts to reveal details of VFBH production channel. >STXS at stage 1.2 is mature for data analysis to improve extraction of signal. ► Rich phenomenology in various kinematic regions: SFA, eikonal approximation ... > Valuable data/cross sections away from VBF cuts can be understood. ► Fully differential NNLO QCD and NLO EW predictions available with N3LO QCD and QCD-EW mixed corrections desired in the future. > Parton Shower in good agreement with NNLO QCD, upgrade to N(N)LL in the future. > Precision tool could also be discovery tool to resolve BSM scenarios. > Many public tools available each with its own speciality in precision frontier. ► Collaboration via LHCHWVBF to combine state-of-the-art predictions for Run 3. Thank You for Your Attention

Xuan Chen (KIT)

Xuan Chen (KIT)