

### **Experimental results from Heavy Ion Collisions**

### Jana Bielcikova (NPI CAS, Czech Republic)



### Exploration of the QCD phase diagram

- heavy-ion collisions allow us to study QCD in laboratory
- properties of the quark-gluon plasma (QGP) at high temperature (RHIC/LHC) and large density (GSI FAIR/NICA)
- nature of the phase transition and search of critical point:
  - → dedicated Beam Energy Scan (BES) program at RHIC

```
Reach in \mu_B at RHIC:collider mode (7-200 GeV): 20 - 420 MeVfixed target (> 3 GeV): up to 720 MeV
```





For BES results see: H. Zbrosczyk (STAR) Sat 17:00

# Dialing various physics phenomena: collision system



**Centrality:** level of overlap of the colliding Lorentz contracted nuclei A very interesting physics program on its own: high multiplicity pp collision studies to look for onset of QGP formation

# Initial state

### Constraining nPDF with LHCb data

 $\ln Q^2$ 



### Low x region:

= In 1/x

parton densities modified in nuclei

 $\Lambda^2_{QCD}$ 

#### Shadowing:

depletion of the effective number of gluons poorly constrained from previous data

### Color Glass Condensate (CGC):

large number of low-x gluons can lead to a very dense saturated wave function expected at low x and small Q<sup>2</sup> region

Saturation scale:  $Q_s^2 \propto A^{1/3}$ 



#### J. Sun (LHCb) Fri 17:50

LHCb

 $D^0$ 

Forward

6

 $\sqrt{s_{NN}} = 5 \text{ TeV}$ 

8

 $p_{\rm T} [{\rm GeV}/c]$ 

Khalek et al. EPJ C 82 (2022) 6

10

### Nuclear modification factor in pPb collisions

#### LHCb, PRL 128 (2022)142004 EPPS16+DDS LHCb Prompt charged + Data $R_{p P b}$ s<sub>NN</sub>=5 TeV particles - CGC Strong suppression at forward rapidity and pQCD+MS 0.6 0.4 2.0<n<2.5 2.5<η<3.0 3.0<n<3.5 3.5<n<4.0 4.0<n<4.3 0.2 1.8 $\overset{\mathrm{q}}{\overset{\mathrm{h}}}\overset{\mathrm{h}}{\overset{\mathrm{h}}}\overset{\mathrm{h}}{\overset{\mathrm{h}}}$ 0.6 0.4 -3.0 < n < -2.5 $-3.5 < \eta < -3.0$ $-4.0 < \eta < -3.5$ -4.5<η<-4.0 -4.8<n<-4.5 0.2 6 8 2 4 6 8 8 6 8 2 4 2 4 6 2 4 2 4 6 8 $p_{\rm T}$ [GeV/c] $p_{\rm T}$ [GeV/c] $p_{\tau}$ [GeV/c] $p_{\tau}$ [GeV/c] $p_{\tau}$ [GeV/c] • $R_{\rm pPb}, 3.0 < y < 3.5$ • $R_{\rm pPb}, 3.5 < y < 4.0$ • $R_{\rm pPb}, 2.0 < y < 2.5$ • $R_{\rm pPb}, 2.5 < y < 3.0$ 1.2 Resummed Resummed - Resummed $R_{\rm pPb}$ Shi et al., PRL 128 (2022) 202302 0.42 3 -6 2-3 5 6 $p_T [\text{GeV}]$

 $p_T [\text{GeV}]$ 

 $p_T [\text{GeV}]$ 

 $p_T [\text{GeV}]$ 

LHCb precision measurements in pPb collisions:

enhancement at backward rapidity. Difficult for models to describe simultaneously data across the full rapidity range at the LHC + RHIC

New CGC NLO calculations can reproduce data from RHIC to LHC!

 $\pi^0$  production: pPb 8.16 TeV, LHCb, arXiv:2204.10608

2

3

•  $R_{\rm pPb}, 4.0 < y < 4.3$ 

5

 $p_T \,[{\rm GeV}]$ 

Resummed

J. Sun (LHCb) Fri 17:50

### The ridges ...



 $p_T^{trig}$ =3-4 GeV/c, 2 GeV/c < $p_T^{assoc}$ <  $p_T^{trig}$ 

The "ridge" in pseudorapidity observed in AuAu collisions at RHIC in 2004.



Ridge observed in small systems at the LHC!



What causes the ridge in small systems: CGC, mini-QGP, ... ?  $\rightarrow$  look to e<sup>+</sup>e<sup>-</sup> or ep (well defined initial conditions)



Bulk production in heavy-ion collisions

### **Inclusive particle production**



### Anisotropic flow



Fourier analysis of particle distribution:

- $v_1$ : directed flow
- v<sub>2</sub>: elliptic flow
- $v_3$ : triangular flow ...

$$\frac{\mathrm{dN}}{\mathrm{d}(\phi - \Psi_{\mathrm{R}})} = \mathrm{A}\left[1 + \sum_{\mathrm{n}} 2\mathbf{v}_{\mathrm{n}} \cos(\mathrm{n}(\phi - \Psi_{\mathrm{R}}))\right]$$



### Anisotropic elliptic flow

A. Dainese (ALICE) Mon 16:00 P. Dixit (STAR) Thu 9:15



New method developments: Asymmetric cumulants, Symmetry plane correlations ...

11

### Hard probes: tomography of nuclear matter

Experimental challenge: QGP lifetime is very short → in-situ probes needed

### Jets, heavy quarks, quarkonia :

originate from initial hard scattering of partons which carry a color charge, interact with nuclear matter.

 $\tau_{\rm b}$ ~ 0.02 fm/c <  $\tau_{\rm c}$  ~0.07 fm/c <  $\tau_{\rm QGP}$  ~1 fm/c

### Energy loss in medium:

- elastic scatterings
- gluon radiation

Depends on:

- color charge
- quark mass (dead cone effect)
- path length in medium

Goal:

Use in-medium parton energy loss to quantify medium properties.





Parton interaction with medium not trivial, depends on strength of coupling, dynamics of fireball ... *challenge for theorists* 

ightarrow see talk by C. Salgado

# **Open heavy flavor production**

### **Constraining hadronization of charm quarks**

#### J. Zhu (ALICE) Thu 11:45







Baryon  $\Lambda_c^+/D^0$ : significantly higher than in  $e^+e^-$ !



**Charm-fragmentation fractions** are not universal!

### Hadronization of charm quarks in medium?

J. Zhu (ALICE) Thu 11:45 S. Kabana (STAR) poster J. Wang (LHCb) Sat 12:25



Note: LHCb data at forward rapidity in peripheral PbPb follows a similar trend (LHCB-PAPER-2021-04, in preparation)



Additional dynamics in QGP:  $\Lambda_c/D^0$  enhancement at intermediate  $p_T$  relative to pp present from RHIC to LHC  $\rightarrow$  similar to light flavor hadrons  $\rightarrow$  parton recombination at play also for c quarks



SMOG@LHCb: first measurements of charm in PbNe@68.5 GeV, S. Mariani, Thu 10:10

### Open heavy flavor production: $D_s^+$ , $\Lambda_c^+$

°\_₹

I-PUB-500853



ALICE, PLB 827 (2022) 136986 ALICE, arXiv 2112.08156  $B_{AA}$ ALICE 0-10% Pb-Pb  $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}$ - Prompt  $\Lambda_c^+$ 1.6 Prompt D<sup>+</sup><sub>s</sub> 1.4 -Prompt average D<sup>0</sup>, D<sup>+</sup>, D<sup>++</sup> 1.2 **0.8** 0.6 0.4 0.2E 10  $p_{_{\rm T}}$  (GeV/c) ALI-PUB-500849

Hint of hadron-mass ordering  $R_{AA}(\Lambda_{c}^{+}) > R_{AA}(D_{s}^{+}) > R_{AA}(D)$ 

### Charm-quark spatial diffusion coefficient



 $1.5 < 2\pi D_s T_c < 4.5$ corresponding to a relaxation time  $\tau_{charm} \approx 3 - 8 \text{ fm/}c$  Spatial diffusion coefficient constrained
from model-to-data comparison
using R<sub>AA</sub>, v<sub>2</sub> and v<sub>3</sub> of non-strange
D mesons

TAMU, MC@sHQ, LIDO, LGR, and Catania models provide a reasonable description

### Open beauty in QGP



See also CMS PAS-HIN-21-003 for  $v_2$  and  $v_3$ 

19

# Beauty in QGP: constraining spatial diffusion coefficient?



Can we already now constrain spatial diffusion coefficient with b measurements by comparing v<sub>2</sub> and R<sub>AA</sub> simultaneously? Run 3 and Run 4 data needed.



First observations of  $B_s^{0}$  and  $B_c^{+}$ Also here, more statistics is needed.

B. Zhang (ALICE) Thu 15:20 T. Sheng (CMS) Thu 15:55

### Jets

### How does medium influence jets ... a bit of history



Dijet asymmetry observed in central PbPb collisions at 2.76 TeV without angular decorrelation. Lost energy is distributed to large angles ("out-of-cone") and low- $p_T$  particles.



### Inclusive jet suppression in medium

C. Roland (CMS) Thu 11:15 B. Cole (ATLAS) Sat 16:10



 $R_{AA}$  increases with jet  $p_T$  reaching a value of about 0.6 at  $p_T = 1$  TeV in central PbPb collisions for R = 0.4.

Can we recover the lost energy? → study jets with larger radius R



Significant constraints on models of jet quenching, medium response, wide angle radiation ... Jet  $R_{AA}$  in PbPb collisions shows only a modest increase,  $R_{AA}$  never reaches unity.

#### CMS, JHEP 05 (2021) 284



### Larger R and lower jet $p_T$ ?



First encouraging results using ML reported by ALICE:

- improved precision and extended reach in  $p_T$  and R
- data will enable to constrain model predictions and allow for comparison with RHIC

### Photon-tagged jets



R<sub>AA</sub> for photon-tagged jets is significantly higher than that for inclusive jets

→ clear demonstration of sensitivity of energy loss to the color-charge of the initiating parton (quarks lose less energy than gluons) Dialing q/g fraction with γ-tagging:  $p_T^{\gamma} > 50 \text{ GeV/} c \rightarrow q/g \text{ fraction} \sim 80\%$ 



# Most calculations underpredict the ratio of $\gamma$ -tagged jet/inclusive jet.

Takacs,Tywoniuk, JHEP 10 (2021) 038 Ke, Xu, Bass, PRC 100 (2019) 064911, PRC 98 (2018) 064901 Ke, Wang, JHEP 05 (2021) 041 Kang, Vitev, Xing, PRC 96 (2017) 014912, Li, Vitev, JHEP 07 (2019) 148, PRD 101 (2020) 076020 He et al., PRC 99 (2019) 054911 Zapp, JEWEL, Eur. Phys. J. C 76 (2016) 695

B. Cole (ATLAS) Sat 16:10

### Flavor dependence of jet-medium interaction

#### J. Wang (CMS) Thu 14:45 M. Nguyen (CMS) Thu 15:35





Quenching modifies b-jet shapes differently than inclusive jets: → relatively larger degree of transverse momentum shifted to large angles.

### Path-length dependence of jet energy loss



27

### Exploring angular dependence via groomed

# jet substructure

### Vacuum:

Parton shower is a multiscale process with a given momentum and angular/virtuality scale.

### Medium:

Angular/virtuality scale can be related to a "resolution scale" at which the jet probes the medium.

SoftDrop: Larkoski et al., JHEP 05 (2014) 146





See also ATLAS-CONF-2022-026

R. Ehlers (ALICE) Fri 14:45



Suppression of large angles and enhancement of small angles. Medium has resolving power for splittings (promotes narrow splittings, filters out wider subjets).

### Exploring microscopic structure of QGP:





A unique observable:

- enables study of intra and inter-jet angular broadening
- large-angle jet deflection studies can probe the nature of the quasi-particles in hot QCD matter ("QCD Molière scattering")

D'Eramo, Rajagopal, Yin, JHEP 01 (2019) 172



## Exploring microscopic structure of QGP: hardest $k_{T,g}$ splittings

Search for high  $k_{\rm T}$  emissions as signature of "Moliere" scattering



Use dynamically groomed jet substructure (1st time in PbPb collisions) SD zcut = 0.2 removes soft component

Deflections off scattering centers are expected to increase the relative  $k_T$  of subjets within a jet in PbPb compared to pp collisions  $\rightarrow$  data do not yet have the sensitivity



# Quarkonia

### Quarkonia as QGP thermometer



Sequential melting:

Differences in the binding energies lead to a sequential melting of the quarkonium states with increasing temperature of the QGP

Quarkonia dissociate in QGP due to color screening of potential between heavy-quarks.

Matsui and Satz, PLB 178 (1986) 416

Lattice QCD calculations of spectral functions  $\Rightarrow T_{diss}$ 

### Quarkonium recombination:

Increase of cc̄ production cross section at the LHC enhances quarkonium production via recombination at the phase boundary or in the QGP

> Braun-Munzinger, Stachel, PLB 490 (2000) 196 Thews et al, PRC 63 (2001) 054905



#### ALICE, arXiv:2108.02523

FONLL : Cacciari, JHEP 05 (1998) 007 NRQCD CS+CO : Butenschoen, PRL 106 (2011) 022003 NRQCD : Ma, PRL 106 (2011) 042002 NRQCD+CGC : Ma, PRL 113 no. 19 (2014) 192301 ICEM : Cheung, PRD 98 no. 11, (2018) 114029 NRQCD+kT fact. : Lipatov, PRD 100 no. 11, (2019) 114021 Detailed measurements exist by all experiments across LHC pp energies and rapidity, here just a snapshot ...

 $J/\psi$  and  $\psi(2S)$  production in pp is well described by models (although small tensions when considering cross section ratios exist)

### $J/\psi$ and $\psi$ (2S) production in PbPb collisions



 $\psi(2S)$  to J/ $\psi$  ratio weakly depends on charm production cross section  $\rightarrow$  important constraints on models

Good agreement between CMS and ALICE data in the common  $p_T$  range, regardless of the different rapidity coverage

### Stronger suppression for $\psi(2S)$ compared to J/ $\psi$

- at low p<sub>T</sub> increase for both charmonium states
   → hint of regeneration
- data well reproduced by transport model (TAMU)
- SHM tends to underestimate the  $\psi(2S)$  result in central collisions

TAMU: Du, Rapp, NPA 943 (2015) 147 SHMc: A. Andronic et. al., Nature 561 (2018) 321 <sub>34</sub>

### Sequential melting of Upsilon states



First observation of Y(3S) state in all centrality classes in PbPb collisions and improved Y(2S) data.

30

Complete picture of sequential melting of Y states revealed!  $R_{AA}(1S) > R_{AA}(2S) > R_{AA}(3S)$ 

> See also: ATLAS, arXiv:2205.03042 W. Zou (ATLAS), Sat 9:00 R<sub>AA</sub> Y(1S), Y(2S) and Y(2S+3S)



### Sequential melting of Upsilon states

Models expect different rate of suppression between the excited states.

#### Models:

Open quantum system + pNRQCDPRD 104 094049Coupled Boltzmann EquationJHEP 10(2018) 094Transport rate equationPRC 96 054901Comover interaction modelJHEP 01(2021) 046

Strong constraints on theoretical models! To do: need to carefully treat individual theoretical ingredients ...

### Flow of heavy quarks at LHC energy

#### *CMS-PAS-HIN-21-001 CMS-PAS-HIN-21-008*



Comprehensive picture in PbPb collisions from Run 2 data

- low p<sub>T</sub>: steep increase following mass hierarchy in hydrodynamic regime light quarks > charm > beauty
- maximum v<sub>2</sub> reached at  $3 < p_T < 6 \text{ GeV}/c$ : light quarks  $\geq$  prompt D<sup>0</sup> > prompt J/ $\psi$  > b $\rightarrow$ hadrons
  - $\rightarrow$  coalescence of heavy quarks with light quarks at play
- high  $p_T$ : convergence towards a non-zero  $v_2$



Non-zero polarization observed in semi-central PbPb collisions and lower  $p_T$  (2-4 GeV/c)

Light-flavor hadrons ( $K^{0*}$ ,  $\phi$ ) "similar", but: ALICE, PRL 125 (2020) 012301

smaller absolute polarization:  $J/\psi < \phi < K^{0*}$ opposite sign of the deviation:  $J/\psi > 0$ ,  $\phi$ ,  $K^{0*} < 0$ 

These require dedicated theory studies to make connection with the QGP properties at its origin

# Electromagnetic probes: direct photons

### **Direct photons**

Inclusive  $\gamma = \operatorname{direct} \gamma + \operatorname{decay} \gamma$ 

Note: decay photons (from  $\pi^0$ ,  $\eta$  decays) has to be removed with % precision

### Sources of direct photons:

- prompt (at high p<sub>T</sub>)
- In addition in medium:
- thermal photons
- pre-equilibrium
- jet-medium interaction
- → give access to temperature and space-time evolution of the medium



 $v_2$  for thermal photons (solid curves) reveals a large sensitivity to formation time for  $p_T > 1.5 \text{ GeV}/c$ 

### Direct photon "puzzle"



Excess of low  $p_T$  photons observed above model predictions from RHIC to LHC energy and large photon  $v_2$ .



Gale, Paquet, Schenke, Shen, PRC 105 (2022) 1, 014909

"Puzzle": large yield: early emission, higher T large v<sub>2</sub>: late emission, lower T

ALICE, PLB 754 (2016) 235 STAR, PLB 770 (2017) 451

### Direct photon "puzzle" (almost) resolved



# Universal scaling of photon dN/dy with collision centrality.

M. Sas (ALICE) Thu 18:40



New ALICE and PHENIX data: only a slight tension at very low p<sub>T</sub> for PHENIX data remains.

More precise photon  $v_2$  data needed to explore the second part of the puzzle ...

### Ultraperipheral collisions: QED laboratory







C. Baldenegro Barrera (CMS) Thu 18:05 V. Lang (ATLAS) Sat 15:55

"Particle physics with an (almost) empty detector at a hadron collider!" V. Lang (ATLAS)



 $\mu$ +3-prong decays (CMS)  $\mu$ +3-prong,  $\mu$ +1-prong,  $\mu$ +e (ATLAS)

New constraints on anomalous magnetic moment of  $\tau$ !

### **Future prospects**

RHIC in 2023-2025:

Simultaneous data taking for STAR (with new forward capabilities) and a new sPHENIX experiment

 unprecedented statistics to be collected for pp, pAu and AuAu collisions at 200 GeV

 $\rightarrow$  completion of RHIC mission



Run 3 and Run 4 will enable to perform microscopic studies of QGP properties with upgraded LHC experiments

LHC:





ALICE 3 Run5+

Thank you for your attention

### BACKUP SLIDES with more details

### Integrated particle yields, mean $p_T$

#### M. Krueger (ALICE) Thu 9:00 F. Ercolessi (ALICE) Thu 9:55



Charged hadron spectral shape evolution with highest possible granularity in multiplicity:

- steeper rise in <p<sub>T</sub>> for small systems (pp, pPb)
- describing both large and small systems simultaneously still challenging for models

Strangeness enhancement one of the early QGP signatures Hadron chemistry driven by multiplicity:

- continuous evolution of strangeness production across collision systems and energies
- enhancement grows with strange quark content

### Universality of charm hadronization?

Significant baryon enhancement in pp collisions

 $\rightarrow$  c-fragmentation fractions are not universal

relative to e<sup>+</sup>e<sup>-</sup>/ep



# Data on the upper edge of FONLL and NNLO calculations

FONLL: JHEP 10 (2012) 137 NNLO: PRL 118 (2017) 12, 122001

### Open heavy flavor production: D<sup>0</sup>, D<sup>+</sup>, D<sup>\*+</sup>

LIDO

LGR

╶╤┛┶╝

\_IDO w/o radiative

LGR w/o radiative

Centrality 30-50%

|v| < 0.8

<sup>2</sup>0.35₽

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05E

-0.10

ALICE

|y| < 0.5

. 🕂 🗗

Pb–Pb,  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 

Centrality 0-10%

AA

1.2

1.0

0.8

0.6

0.4

0.2

Radiative energy loss important to describe intermediate and high  $p_T$  It has small impact on low- $p_T$  region

LIDO: PRC 98 064901 (2018) LGR: EPJC 807 671 (2020)

Charm-quark hadronisation via recombination essential to describe low/intermediate  $p_T$  D mesons acquire additional flow recombining with light quarks

PHSD: PRC 93 034906 (2016) DAB-MOD: PRC 96 064903 (2017) POWLANG: EPJC 75 3 121 (2015)



### Charm and Strange Beauty in QGP



T. Sheng (CMS) Thu 15:55

CMS, PLB 829 (2022) 137062 CMS, arXiv:2201.02659

> First observation of  $B_s^0 > 5\sigma$ in PbPb collisions

B<sub>s</sub> and B<sub>c</sub> can help disentangle interplay of suppression and enhancement mechanisms in the production of heavy-flavor mesons in the QGP

 $\rightarrow$  more data needed



### Semi-inclusive recoil jet studies



Interplay between hadron and jet energy loss?

D'Eramo, Rajagopal, Yin, JHEP 01 (2019) 172

("QCD Molière scattering")

### Di-jet asymmetry

leading di-jet momentum balance  $x_{\rm J} \equiv p_{\rm T,2}/p_{\rm T,1}$ 

ATLAS, arXiv:2205.00682



Dijet-yield-normalized x<sub>J</sub> distributions: increased fraction of imbalanced jets in PbPb compared to pp collisions.



Absolutely-normalized dijet rates: balanced dijets are significantly more suppressed than imbalanced ones.

Central PbPb collisions: a broad maximum around  $x_J = 0.6$  for "low"  $p_T = 100 - 112$  GeV  $\rightarrow$  challenge for models to describe it ... it would be interesting to see even lower  $p_T$ 



### M. Taylor (CMS) Fri 15:55

$$\begin{split} & \forall s_{\text{NN}} = 5.02 \; \text{TeV} \qquad p_{\text{T}}^{\text{trk}} > 1 \; \text{GeV/c}, \; \text{anti-k}_{\text{T}} \; \text{jet} \; \text{R} = 0.3 \\ & \text{PbPb} \; 404 \; \mu \text{b}^{\text{-1}} \qquad p_{\text{T}}^{\text{jet}} > 30 \; \text{GeV/c}, \; \left|\eta^{\text{jet}}\right| < 1.6 \\ & \text{pp} \; 27.4 \; \text{pb}^{\text{-1}} \qquad p_{\text{T}}^{\gamma} > 60 \; \text{GeV/c}, \; \left|\eta^{\gamma}\right| < 1.44, \; \Delta \varphi_{\text{j}\gamma} > \frac{7\pi}{8} \end{split}$$

Small excess of low- $p_T$  and depletion of high- $p_T$  particles. Medium back-reaction in models improves data description.

```
CMS, PRL (2018) 242301
```

Small relative modification of jet core and enhancement of particles away from jet axis.

CMS, PRL 122 (2019) 152001

### Z-tagged fragmentation



Similarly as for γ-tagged correlations excess (depletion) of low (high) momentum particles measured



SCET<sub>G</sub> with g=2.0 reasonable description of data Hybrid model with medium wake undershoots intermediate  $p_T = 3-5$  GeV, discrepancy even more pronounced in  $\Delta\phi$  distributions

### Need to improve medium response

### $J/\psi$ production in pPb and PbPb collisions



#### H. Sharma (ALICE) Sat 11:15

ALICE, JHEP06 (2022) 011 ATLAS, EPJ C78 (2018) 171

#### Cold nuclear matter effects?

- hints of CNM for prompt compared to non-prompt J/ $\psi$  at low  $p_T$
- models including CNM effects
  (E-loss and nuclear shadowing)
  describe the data

#### Hot medium effects?

Prompt J/ $\psi$ : dissociation and regeneration of quarkonia needed to describe data

Non-prompt J/ $\psi$ :

- consistent with R<sub>AA</sub> of non-prompt D<sup>0</sup> (b-quark E-loss)
- models implementing collisional
- + radiative E-loss describe data

56

### $J/\psi$ production at RHIC vs LHC energy



### J/psi flow pp, pPb, PbPb



### Polarization of quarkonia

quarkonium polarization is sensitive to its production mechanisms

**J/**ψ



 $J/\psi$ : no sizable polarization observed in pp and PbPb collisions

ALICE: PRL 108 (2012) 082001 EPJC 78 (2018) 562 LHCb: EPJC 73 (2013) 2631 CMS: PLB, 727 (2013) 381

First measurements of Y(1S) in pp:

- good agreement of ALICE and LHCb
- qualitatively described by NLO NRQCD calculations

M. Butenschoen et al., PRL 108 (2012) 172002



### Upsilon melting: CMS vs ATLAS

