

Technology and Industrial applications

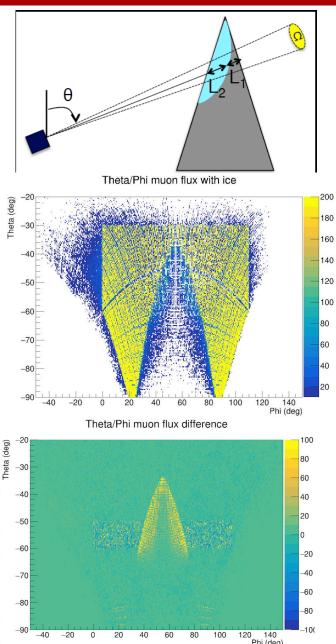
CONVENORS : Alessandro Montanari (INFN BO), Massimo Caccia (U.Insubria & INFN Milano), Hucheng Chen (BNL), Alexander Romanenko (Fermilab), Magnus Mager (CERN)

Ch. de LA TAILLE 13 july 2022

Session created in ICHEP2016. 15 talks at ICHEPP 2022 (6 in 2016, 8 in 2018, 8 in 2020)

from HEP to other fields and from other fields to HEP and from industry

https://agenda.infn.it/event/28874/sessions/21498/#20220707


ICHEP 2022 / Programme

Thursday, 7 July 2022

14:30	Innovation Ecosystems: The ATTRACT Example	GARCIA TELLO, Pablo
14:45	A new detector to muon tomography for glaciers melting monitoring	RABAGLIA, Sara
15:00	Multipurpose J-PET detector for tests of discrete symmetries and medical imaging	SHIVANI, Shivani SHIVANI, Shivani
15:15	Quantifying calcium concentration in living cells through detection of photoluminescence single photon trails	VESCO, Guglielmo
15:30	Worldwide industrial developments for compact accelerators based on the Nb3Sn superconducting radiofrequency (SRF) technology.	GRIGORY, Eremeev
15:45	A Silicon-photomultiplier based random bit streamer I	CACCIA, Massimo
16:00	Superconducting radio frequency technology enabling new transformative applications in QIS and dark matter searches	GRASSELLINO, Anna
16:15	Power electronics in HEP experimental caverns	GIORDANO, Ferdinando
17:00	Novel techniques for high density channel y measurements based on SiPM	PERRI, Marco
17:15	Towards efficient neutron spectroscopy with a Nitrogen-filled Spherical Proportional Counter	MANTHOS, Ioannis
17:30	MAPS for x-ray detection: trading high efficiency for low cost	GIUBILATO, Piero
17:45	ORIGIN, an EU project targeting real-time 3D dose imaging and source localization in brachytherapy: commissioning and first results of a 16-sensor prototype.	GIAZ, Agnese
18:00	Development of a new compact and 2D-multiplexed Time Projection Chamber for muon tomography	LEHURAUX, Marion
18:15	The Bergen proton-CT	ROEHRICH, Dieter
18:30	Quantum computing for particle physics applications	TAVERNELLI, Ivano

Muon tomography for glaciers melting monitoring

Detector Requirements & Challenges

Good tracking resolution

Goal to measure thickness with ~5m error in thickness and reconstruct small volumes

Need resolution better than 5mrad for incoming muon tracks

> Simple Scintillating fiber detector Light detection with SiPM Low number of channels ~2000 Commercially available powering and readout systems

> > Sara Rabaglia - Università di Bologna

Fast detector

Need to reject background from

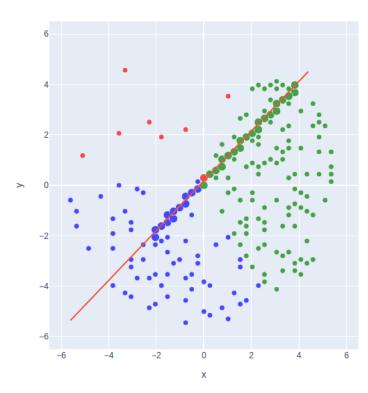
muon not traversing the target

Trigger and fast response

needed, >1kHz sampling

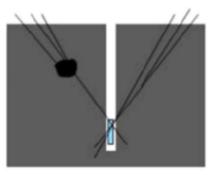
and secondaries

Low maintenance and simple design


The detector should be able to operate in open-sky, for long period of times

Low power consumption, able to operate in adverse weather, reliable and with enough redundancy.

3D muon tomography

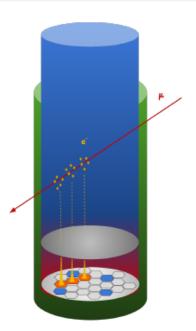

Marion LEHURAUX (CEA Saclay)

- Probing the underground with cosmic muons
- Micromegas TPC with 2D multiplexing

Motivations

Expanding the spectrum of applications

New applications: probing the underground


- Civil engineering (prospecting & monitoring)
- Geothermal fields sounding
- Mining exploration

Constraints & Requirements

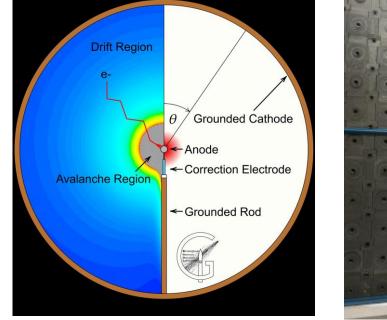
- Underground operation: minimum electric consumption
- Use existing drilling holes: $\emptyset < 20$ cm
- Almost 2π angular acceptance
- 3D reconstruction

Technical solution

- a cylindrical Time Projection Chamber
- 2D-multiplexed
- 14 cm Ø Micromegas readout plane

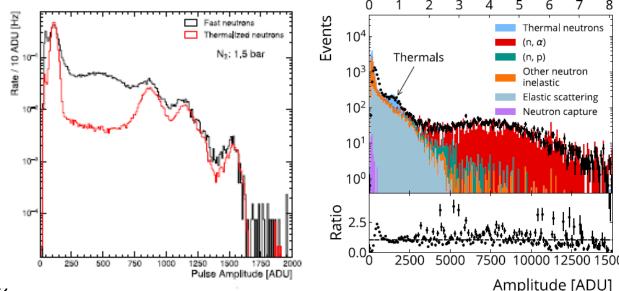
ICHEP 2022

4/12


M. Lehuraux (CEA) CdLT ICHEP 13 jul 22

Neutron detection with the Spherical Proportional Counter Joannis MANTHOS (Birmingham)

- Replace ³He by Nitrogen
- Use Spherical Proportional counter
 - Low noise and pulse shape analysis
 - Low pressure reduces wall effect
- Neutron detection performed
 - in the Graphite stack and at the MC40 cyclotron facility in Birmingham
 - Foreseen at Boulby underground facility
 - Spectroscopic capability
- Applications in neutron spectroscopy for dark matter

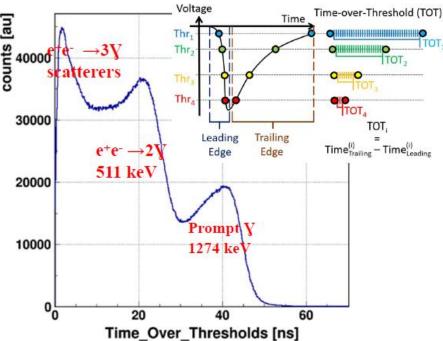


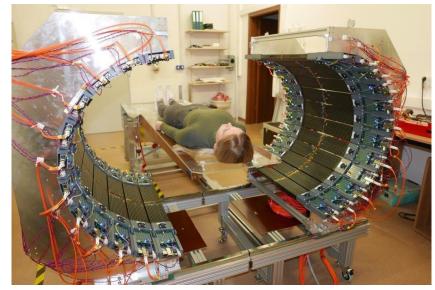
Multipurpose J-PET detector

- "Jagiellonian PET"
- The cost-effective total-body PET scanner based on plastic scintillators;
- PET scanner with positronium and multiphoton imaging capabilities;
- Modular and transportable PET scanner with the field of view adjustable to the patient size.
- Study of discrete symmetry

	29		<u>e-</u>
a ga		09	
	ľ	alle	
P			
dia			

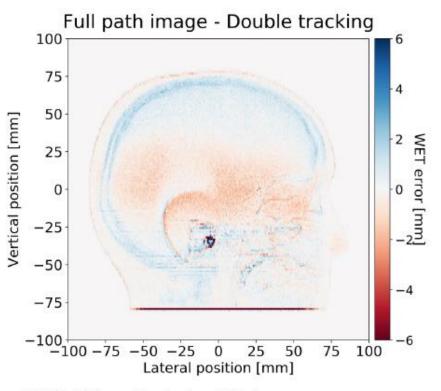
Parameters	Traditional PET	Strip J-PET	
Farameters		30093-721	
Type of scintillator	crystals LSO, LYSO, BGO	plastics BC-404, BC-420, EJ-230	
Physical phenomenon	photoelectric effect	Compton scattering	
Measured property	energy of gamma photon + time of flight	time of flight	
Granularity of detector	high	low	
Number of scintillators	13,824 to 32,444 crystals	192 strips	
Scintillator size [mm ³]	e.g. 4x4x20; 6.3x6.3x30	e.g. 6x24x500; 5x19x300	
Photo-detector	PMT, SiPM, dSiPM, APD	PMT, SiPM	
Number of PMTs	256 to 768	384	
Detection efficiency	high	low	
Detector's acceptance	low	high	
Axial length [mm]	157 to 260	500	
Used electronics	analog	digital	
Signal triggering	triggering	triggerless data acquisition	
TOF resolution* [ps]	345 to 550	320	
Simultaneous imaging of the whole human body	no	yes	
Simultaneous imaging of PET-MRI	yes	yes	
Simultaneous imaging of	no	yes	
Left	Δz_{Up}	Right	
t_{Up}^{Left}		t _{Up}	
		2	
SiPM Plastic scint	illator	Sipm Sipm	


 Δz_{Down}

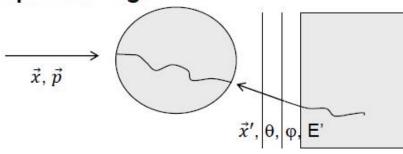

t_{Down}

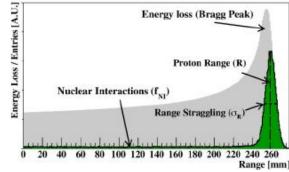
 $L_S/2$

 t_{Down}^{Left}

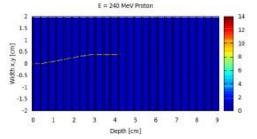


The Bergen proton CT


 On-line Bragg peak monitoring to ~1 mm

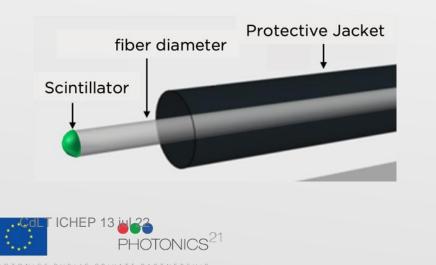

* WET: Water Equivalent Thickness

Clinical pCT - design


Conceptual design

- x,p given by beam optics and scanning system
- x', θ, φ, E' have to be measured with high precision
 - position resolution ~5 μm with minimal MS, i.e. first two tracking layers very thin
- → Extremely high-granularity digital calorimeter for tracking, range and energy loss measurement
- Technical design
 - Planes of CMOS sensors Monolithic Active Pixel Sensors (MAPS) with digital readout– as active layers in a sampling calorimeter

Dieter ROEHRICH (U. Bergen)

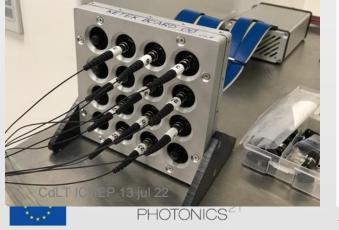


THE ORIGIN PROJECT

Optical Fibre Dose Imaging for Adaptive Brachytherapy [in-situ radiotherapy]

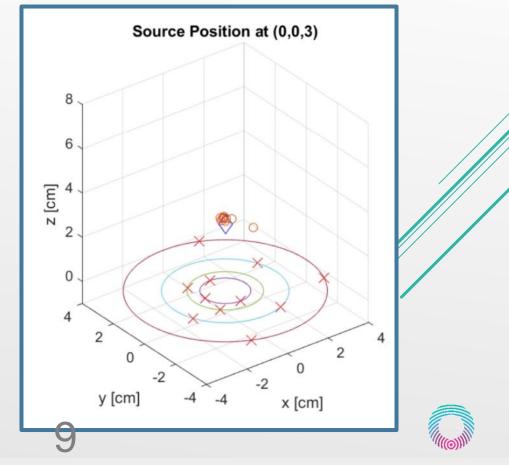
ORIGIN aims to deliver more effective, photonics-enabled, brachytherapy for cancer treatment through advanced **real-time radiation dose imaging** and source localisation. This will be achieved by the development of a new **optical fibre-based sensor** system to support diagnostics-driven therapy through enhanced adaptive brachytherapy.

The project's goal will be achieved by developing a **16 optical fiber**-based system with **scintillating light detected by SiPM** to reconstruct the dose map.



Scintillator	Gadox (LDR)	YVO (HDR)
τ [μs] *	500	500
λ_{\max} [nm]	545	600 - 650
LY [ph/MeV]*	7.1 · 10 ⁴	4.8 · 10 ⁴
Transmittance*	10 8 %	4.2 %

THE 16 CHANNEL READOUT SYSTEM

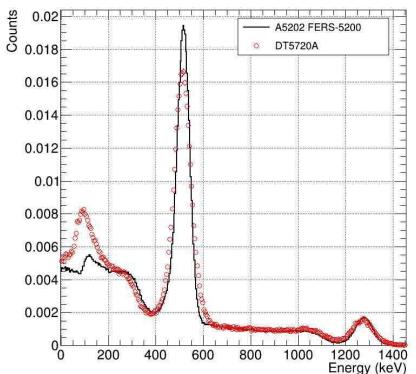

64-channel SiPM readout board (CAEN* FERS) equipped with 2 WEEROC CITIROC1A ASICs**

- ✓ Single p.e. counting capability
- ✓ Maximum counting rate: 20 MHz
- ✓ 1 HV power supply (20 100V) with temperature compensation
- ✓ Ethernet, usb2 and optical link interface for readout (up to 6.25 Gbit/s)

*https://www.caen.it/products/a5202/

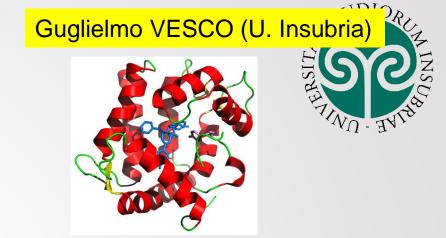
**https://www.weeroc.com/products/sipm-read-out/citiroc-1a

Marco PERRI (CAEN)

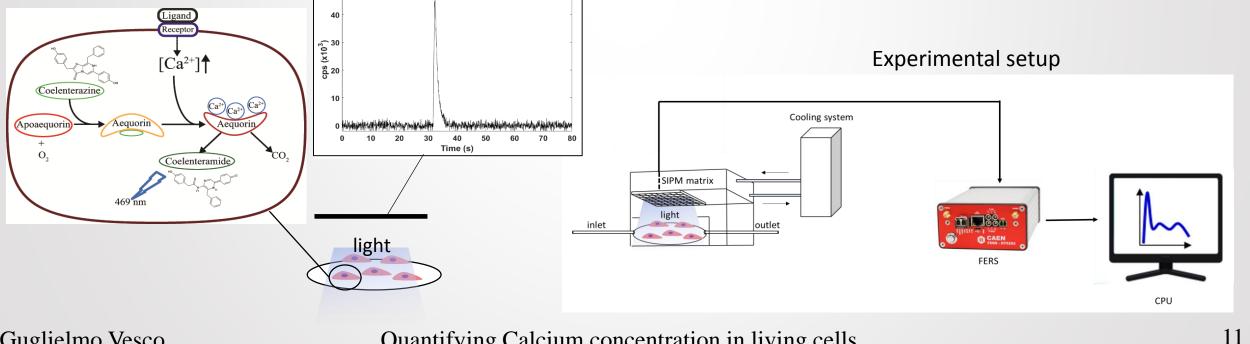


Novel techniques for high density channel γ measurements based on SiPM

Comparing digitizer-based (D5720) to ASIC-based (A5202) readout



	22 Na (511 KeV)	$^{137}Cs~(662~{\rm KeV})$	60 Co (1172 KeV)	60 Co (1332 Ke
A5202+LYSO	$(9.5 \pm 0.1)\%$	$(9.3 \pm 0.1)\%$	$(5.8 \pm 0.1)\%$	$(5.0 \pm 0.1)\%$
DT5720A+LYSO	$(12.3 \pm 0.1)\%$	$(10.3 \pm 0.1)\%$	$(6.3 \pm 0.4)\%$	$(5.4 \pm 0.2)\%$
A5202+CsI(Tl)	$(11.9 \pm 0.1)\%$	$(10.9 \pm 0.1)\%$	$(5.8 \pm 0.2)\%$	$(5.6 \pm 0.1)\%$
DT5720A+CsI(Tl)	$(9.6 \pm 0.1)\%$	(8.9 ± 0.1) %	$(5.6 \pm 0.2)\%$	$(5.4 \pm 0.1)\%$
A5202+BGO	$(14.4 \pm 0.1)\%$	$(13.5 \pm 0.1)\%$	$(8.7 \pm 0.1)\%$	$(7.1 \pm 0.1)\%$
DT5720A+BGO	$(12.0 \pm 0.1)\%$	$(11.0 \pm 0.1)\%$	$(7.7 \pm 0.3)\%$	$(6.8 \pm 0.4)\%$


²²Na

Aequorin: an useful bioluminescence sensor to measure calcium transients concentrations in living cells

- Standard biotechnology methods for cellular Aequorin expression .
- Wide dynamic range .
- High signal-to-noise ratio .
- Low Ca²⁺⁻buffering effect •

Upper limit extended by ≈ 25 times with respect to the single SiPM based system (Lomazzi et al., ACS Sens. 2020, 5, 2388-2397)

Guglielmo Vesco

Quantifying Calcium concentration in living cells

HOW TO GENERATE AN UNPREDICTABLE RANDOM NUMBER?

PRNG (PseudoRandom Number Generators)

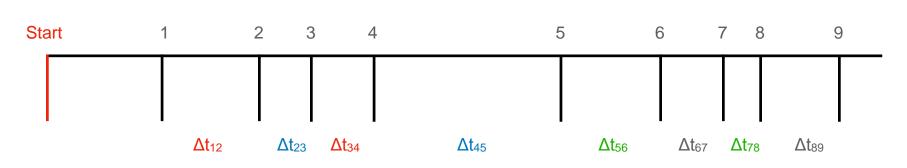
Fast, cheap & reasonably easy. However:

- software Random Number Generation is PSEUDO
 code can be bugged
 and it may have a RACKDOOR
- and it may have a BACKDOOR

TRNG (True Random Number Generators)

Extracting bits from the observation of natural phenomena is not trivial and you may suffer from

- "coin bias" by the embodiment of a great principle
- weakness against environmental parameters
- a significant "attack surface", conditioning the device in use
- ▶ low bit rate


▶ The essence of :

turning unpredictable "Dark Pulses" into bits:

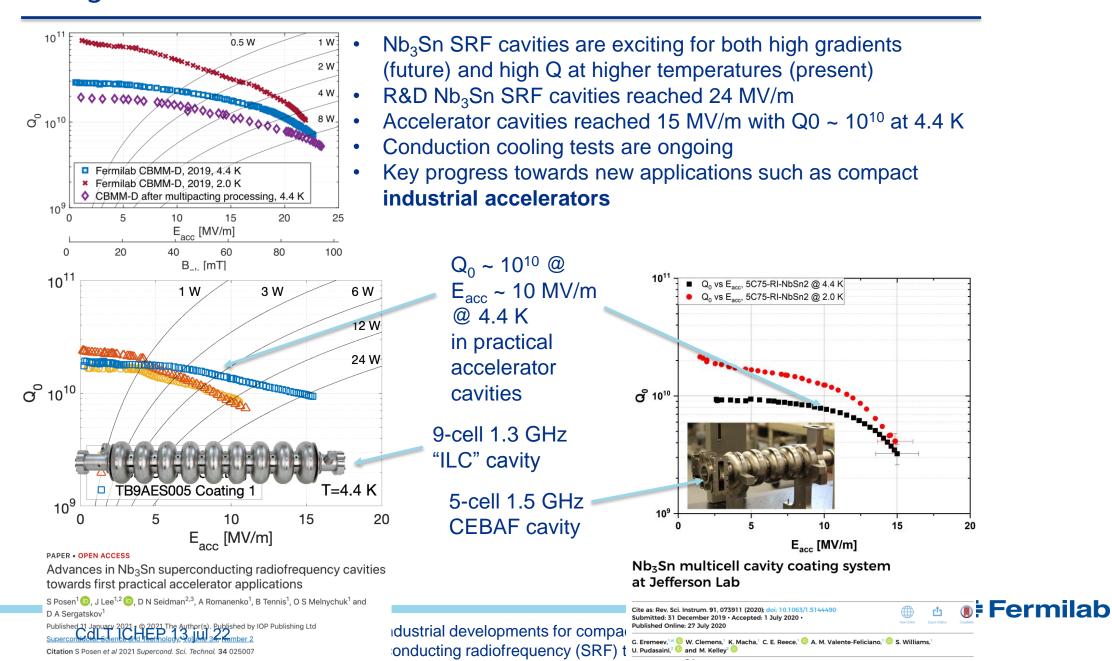
1. tagging & time stamping the occurrences of the random pulses

2. analysing the time series of the pulses:

- Italian Patent granted in Sept., 2020
- EU patent granted in April 2022
- extension in US, China, Korea, Jp ongoing

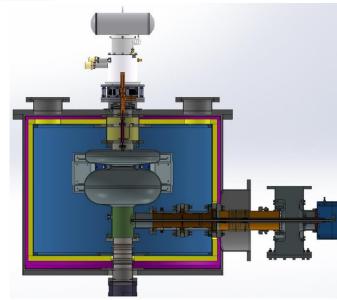
Tools for Discovery Electronic Instrumentatic

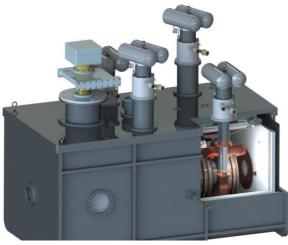
Power electronics in HEP experimental caverns


Ferdinando Giordano on behalf of the Power Supplies R&D group

Thanks to all these tests CAEN has developed a power supply with unprecedented power and channel density: 32 channels packed in less than 5 U 19" rack, capable of delivering up to 6 kW to the detector.

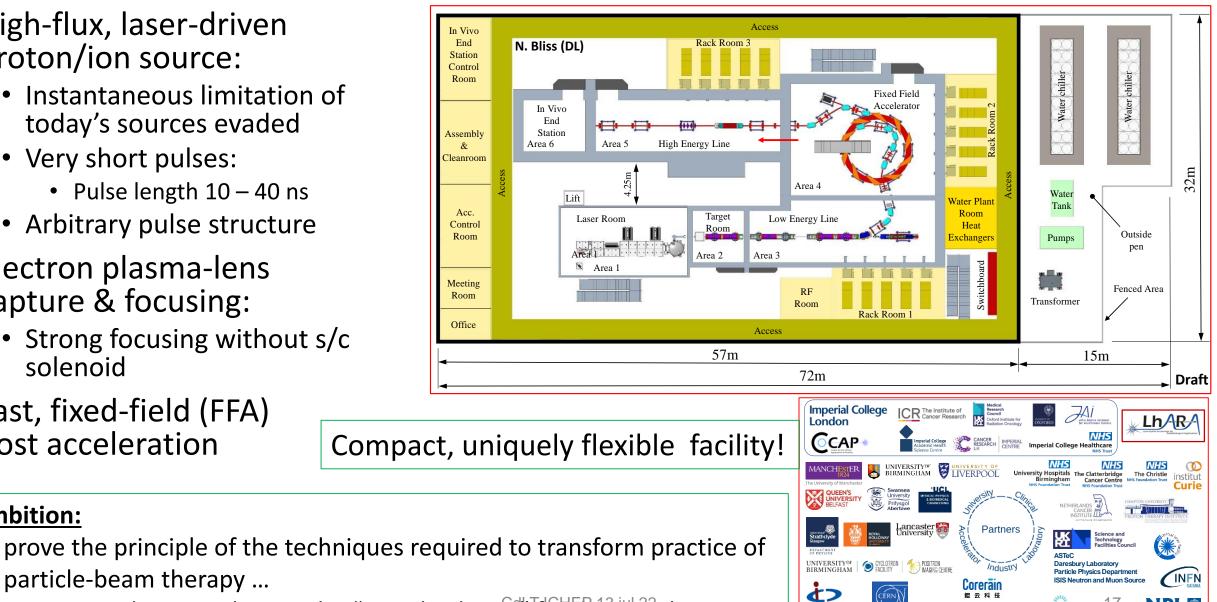
The first LV/HV mixed board has been delivered for testing. Again, the design is unprecedented improving both channel and power density with respect to the boards deployed ad the beginning of LHC. Moreover, the new boards weight less and are easier to maintain.


Nb₃Sn state-of-the-art


Grigory EREMEEV (FNAL)

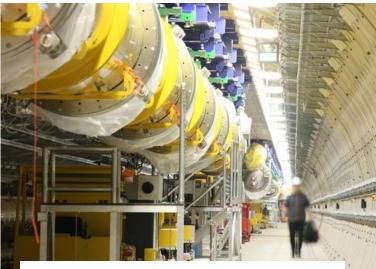
Summary

- An explosion of activities on Nb₃Sn development for SRF cavities
- High Q₀ at LHe temperatures with Nb₃Sn cavities is attractive for industrial applications
 - Potential for $Q_0 > 10^{10}$ at ~ 1 GHz at 4.4 K \implies compact cryomodules
 - Potential for using cryocoolers, cooling the cavities via conduction cooling
- Impacts high duty factor applications, especially small and medium-scale compact industrial applications (eg replace ⁶⁰Co for medical sterilization)
- Studies around the world to use conduction cooling of Nb₃Sn cavities for compact cryomodules
- Work to optimize the design of Nb₃Sn cavity enabled cryomodules/accelerators
- Several cryostat/cryomodule tests are planned in the nearest future stay tuned!


NPL®

LhARA: the Laser-hybrid Accelerator for Radiobiological Applications

- High-flux, laser-driven proton/ion source:
 - Instantaneous limitation of today's sources evaded
 - Very short pulses:
 - Pulse length 10 40 ns
 - Arbitrary pulse structure
- Electron plasma-lens capture & focusing:
 - Strong focusing without s/c solenoid
- Fast, fixed-field (FFA) post acceleration


particle-beam therapy ...

Ambition:

.... using techniques that can be "spun back into" fundamental science

SRF technology enabling new transformative applications in quantum information science and dark sector searches

<u>European XFEL</u> ~1000 cavities $Q > 10^{10}$ @ 2K, 23.6 MV/m

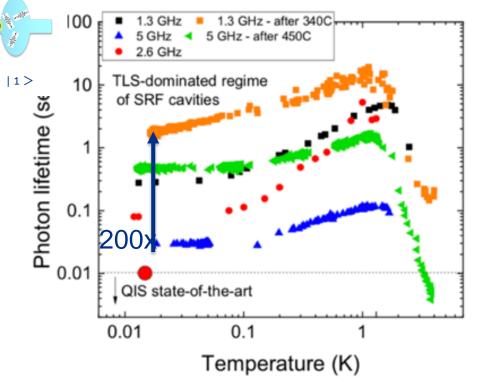
SRF Quantum Computing – where are the "bits"?

 How to encode a qubit (|0> and |1>) inside the cavity?
 T= 10 mK

Example 1: Call the ground state (**no photons**) as |0>, one **single photon** present as |1> (<u>Fock</u> state)

Example 2: Call an **even** number of photons as |0>, **odd** number as |1>

NOTE: Josephson-junction based <u>transmon</u> is used for state creation and quantum operations


|0>

Dilution Fridge at FermilabAPS-TD Quantum Lab (QCL)

Anna GRASSELINO (FNAL)

2 seconds of coherence demonstrated

A. Romanenko et al, Phys. Rev. Applied 13, 034032, 20

Superconducting Quantum Materials and Systems Center ····SQMS····· 10+ qubits prototype **Electronics**/optimal 100+ qubits Transmon qubit improvement controls prototype 1000+ qubits prototype @ in coherence > 10development/scale up **Colossal Fridge** 2031 2025-6 2028 Mid Term DOE Center Technical Second Term mid term **Quantum Facilities for Center Renewal** Colossal fridge 10mk commission Colossal fridge 50m ed **Entangled multi-DR** fridge system Quantum Sensors exploration for New testbeds commissioned fundamental physics **5** Fermilab

Quantum Computing applications in High Energy Physics Ivano Tavernelli IBM Quantum, IBM Research - Zurich

IBM Quantum

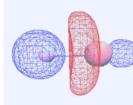
Ivano TAVERNELLI (IBM)

Digital quantum computers are there!

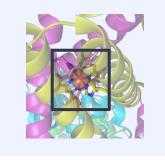
Are we ready?

Eagle chip with 127 qubits released in 2021

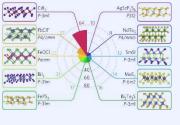
Development Roadmap

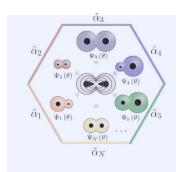

Executed by IBM 🥪 On target 🏷

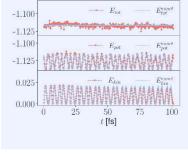
IBM Quantum

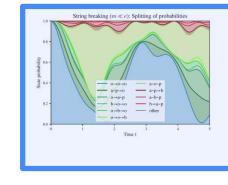

	2019 📀	2020 🔗	2021 🤡	2022	2023	2024	2025	2026+
	Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applica- tions with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integration of error correction into Qiskit Runtime
Model Developers					Prototype quantum softwar	e applications	Quantum software applicat	ions
							Machine learning Natural	science Optimization
Algorithm Developers		Quantum algorithm and ap	plication modules	\bigcirc	Quantum Serverless			
Developers		Machine learning Natura	I science Optimization	Qiskit		Intelligent orchestration	Circuit Knitting Toolbox	Circuit libraries
Kernel Developers	Circuits	$\overline{\mathbf{O}}$	Qiskit Runtime					
Developers				Dynamic circuits 👌	Threaded primitives	Error suppression and mitig	gation	Error correction
System Modularity	Falcon 27 qubits	Hummingbird 🔗 65 qubits	Eagle <	Osprey 433 qubits	Condor 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K-100K qubits with classical
								and quantum communication
					Heron 133 qubits x p	Crossbill 408 qubits		

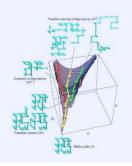
Overview of near-term applications in Qiskit


IBM Quantum

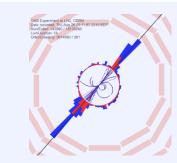

Electronic structure calculations: ground & excited states, vibronic structure


Scaling-up functionalities: towards the simulation of large molecular systems


Quantum machine learning for material design


Ab-initio molecular design

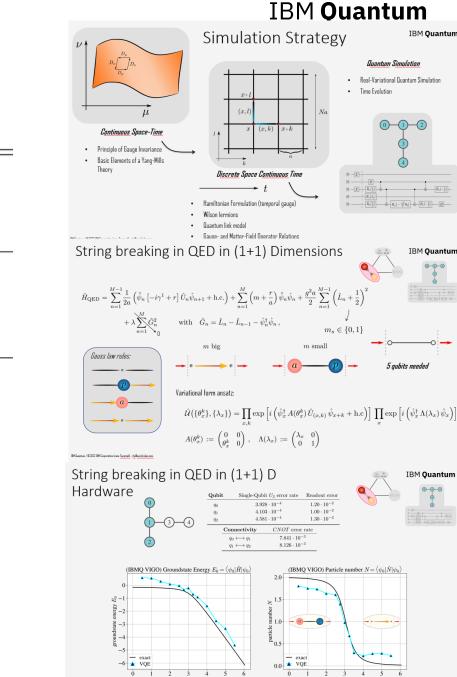
Ab-initio molecular dynamics, Langevin dynamics



Lattice gauge theory: from Schwinger model to QED and beyond

Configuration space sampling and folding

Quantum dynamics in photophysics and photochemistry



Quantum machine learning for high energy physics

Resources estimation

System size	Lattice QED	Lattice QCD	
Proof of concepts [3x1 lattice]	10 qubits 3k CNOT gates	100 qubits	
Non-trivial physics [6x6 lattice]	200 qubits 60k CNOT gates	2k qubits	
QED/QCD applications (10x10x10 lattice)	16k qubits 6M CNOT gates	160k qubits	

S.V. Mathis, G. Mazzola, I. Tavernelli, *Toward scalable simulations* of lattice gauge theories on quantum computers, Phys. Rev. D 102, 094501³⁴(2020).

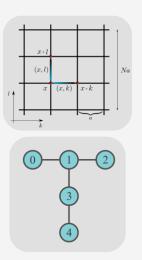
IEN Durature / G 2022 IEN Car

mass n

mass m

Conclusion

Quantum computers can provide quantum speed-up for Lattice Gauge Theory in the **fault-tolerant regime** starting from system sizes of the order of 10x10x10 +1 dimensions


Do we need to focus on fault-tolerant quantum algorithms?

We believe that there can be interesting problems in low dimensions, with

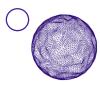
- extended entanglement
- □ complex dynamics

for which **near-term quantum approches** can potentially give a significant contribution

G Mazzola, SV Mathis, G Mazzola, I Tavernelli, Gauge-invariant quantum circuits for (1) and Yang-Mills lattice gauge theories, Phys. Rev. Res. 3, 043209 (2021). S.V. Mathis, G. Mazzola, I. Tavernelli , *Toward scalable simulations of lattice gauge theories on quantum computers,* Phys. Rev. D 102, 094501 (2020).

IBM Quantum

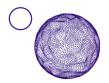
24



ICHEP2018 SEOUL XXXIX INTERNATIONAL CONFERENCE ON high energy PHYSICS

Speakers from industry and research institutions covering the connections between industry and particle physics and addressing key topics such as:

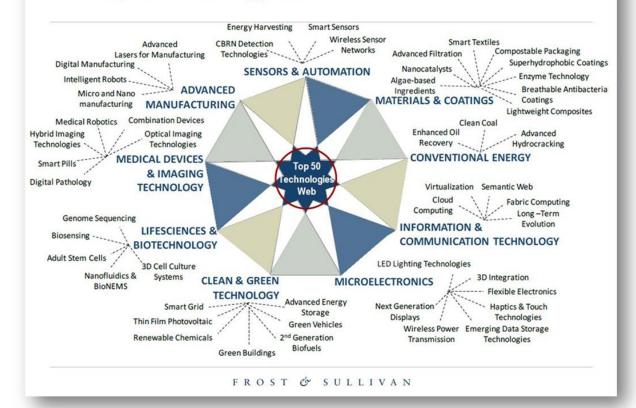
- What are the best models to bring developments from HEP to the market?
- How can we lower the current barriers to realizing industrial opportunities?
 - Proof of Concept support for maturing technologies
- International collaborations and networks as facilitators for new developments
- Help developing entrepreneurs via spin-offs and start-ups


ATTRACT as an answer to the question : is the potential of European Research Infrastructures as Innovation Engines fully exploited ?

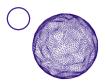
A novel Ecosystem focusing on breakthrough detection and imaging technologies

- 1. The innovation potential of European RIs is only partially exploited.
- 2. There is a clear need for identifying win-win R&D&I opportunities between the industrial communities and those behind RIs beyond the existing frameworks and practices.
- 3. A novel action framework was necessary for enabling those opportunities incorporating the paradigm of "Open Science, Open Innovation, Open to the World".
- 4. Such framework should be prone to be tested, by generating, gathering and analyzing data. Only then, it should be possible to corroborate its validity and consider a significant scaled-up deployment.

[•] Many of them have been reflected in the EC policy paper, Sustainable Research Infrastructures, https://ec.europa.eu/info/sites/default/files/research_and_innovation/research_by_area/documents/swd-infrastructures_323-2017.pdf

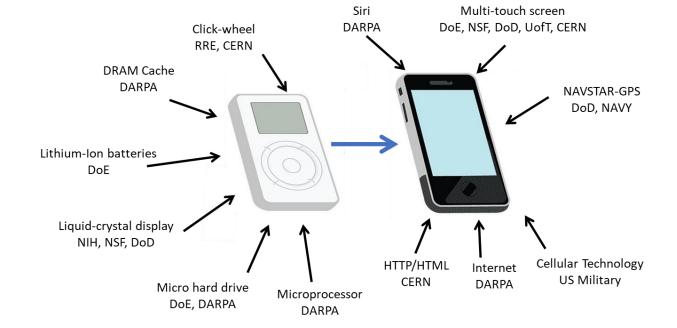


ATTRACT: Why Detection and Imaging?


Are you able to point a field in the picture with nothing to do with Detection and Imaging?

- The scientific mission of European RIs as well as their R&D associated communities is strongly coupled with detection and imaging technology instrumentation (including computing).
- Detection and Imaging technologies are and will be at the core of future industrial developments applications and business (e.g. IoT, Smart Cities, Autonomous Transport, Sustainable Agriculture, etc).

Top 50 Technology Web



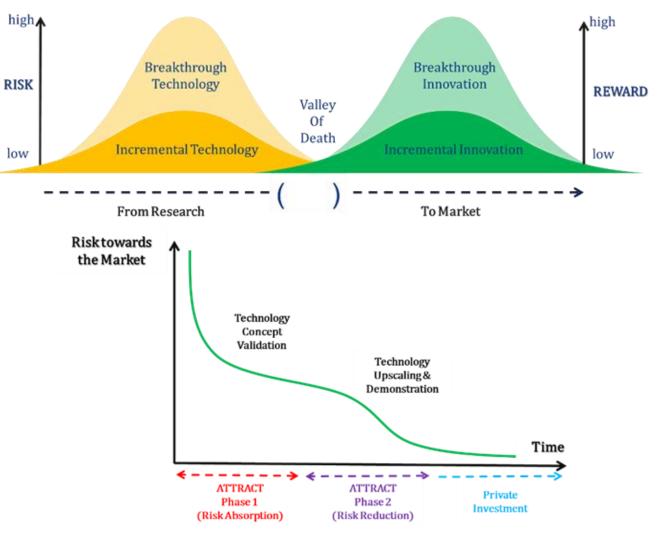
ATTRACT: Key pillars (1)

"Where does breakthrough Innovation come from?"

Public Funding: Key for helping nascent breakthrough technologies, many of them even at the conceptual level, mature for raising the interest of private capital .

DARPA: Defense Advance Research Project Agency RRE: Royal Radar Establishment CERN: European Organization for Nuclear Research DoE: Department of Energy NIH: National Institute of Health NSF: National Science Foundation DoD: Department of Defence UofT: University of Toronto

ATTRACT: Key pillars (2)

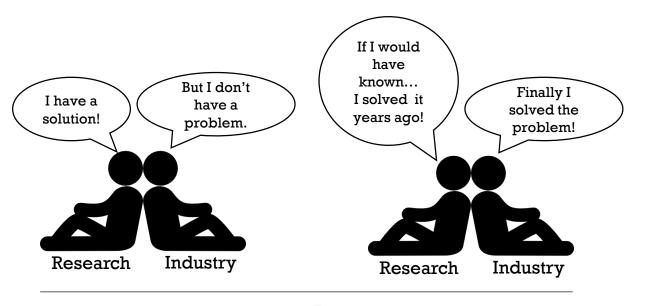

"Not two Valleys of Death look the same"

Phase approach to funding: Breakthrough Technologies (coming from Fundamental Research) are very risky to invest upon for private capital.

De-risking them needs public funding:

First, a **risk-absorption stage**, where ideas and concepts could reach a prototype level and technology concept validation.

Second, a **risk-mitigation stage**, where the most promising concepts are further helped raising towards a pre-market product.



ATTRACT: Key pillars (3)

"Trust and shared know-how is not built in one day"

Co-Innovation:

- Bridge between two communities (research and industry) that in principle have different motivations and goals for undertaking R&D&I (capital and/or resource intensive) efforts.
- Entails the identification and collaboratively pursuing of win-win outcomes, starting already at the conceptual stages of a technology development and enduring them until the later stages of the innovation value chain (e.g. commercialization).
- Departs from research-industry relationships established as simply customer-supplier ones.

ATTRACT: Key pillars (4)

"Young people want to change the world"

Young Innovators Projects:

- ATTRACT is facilitating the integration of interdisciplinary MSc level students tems working side by side with professional researchers from academia and industry developing the R&D&I funded projects.
- These Young Innovators' goal is prototyping technology solutions specifically addressing the United Nations Sustainable Development Goals,
- They use a Design Thinking approach inspired by the technology developed by the projects.

Concluding remarks

- Steady progress on innovation and KT/TT
 - Many fruitful initiatives (CERN KT, ATTRACT, Aidainova...)
 - Fostering links with other fields
 - Important for public/political support of HEP
 - underlined by ICFA report
- Are we there or can we do better ?
 - High-level support but still some intermediate blockages
 - « Pure elevated » research vs « low earthly » applications !
 - Often stumbling also on (overvalued?) IP
- Engineering manpower is going down in many labs : could outsourcing be a solution ?
 - Attractiveness issues now in the public sector
 - Step already done in several domains (sensors, accelerators...)

IT'S THE LATEST GOVERNMENT GUIDANCE ON 'MANAGING PAPERWORK FOR SMALL BUSINESSES'

• Thank you for your attention and don't hesitate to visit our industrial sponsors !

