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Fundamental open questions in formal HEP

• Solvable Quantum Field Theories (QFTs)
* S-matrix (perturbative and non-perturbative effects,…)
* Strongly coupled QFTs (e.g. Confinement) 
* Phases of QFTs …

• Quantum gravity

* Mathematical consistency (EFT vs UV completion) 

* Black holes (singularity, information)
* Big-bang (singularity, wave function of the universe, density perturbations,…) 
* Vacuum energy and transitions (Dark energy, Tunneling in gravity, CDL,…) 
* Unification (BSM and gravity) 

e.g. see all parallel talks



Black holes & Information



Main progress in past 25 years

AdS/CFT correspondence (Gauge/Gravity duality, Holography)

Maldacena 1997,…

e.g.
String theory on AdS5 x S5 ≡ 𝟒𝐝 N=4 SU(Nc) Yang-Mills 

• Large Nc
• Emerging ‘space’!



Main progress in past 3 years

Hawking information loss paradox:

• We ‘knew’ from AdS/CFT that evolution should be unitary, but why?

• Recent progress: Calculations indicate unitarity (not yet full proof but close)

Penington 2019, Almheiri et al, Maldacena et al….

(Earlier work 2005-2020s: Ryu-Takayanagi, Hubeny et al., Wall, …).

Also: number of microscopic states matching the black hole entropy (Strominger&Vafa 1995) 
+ recent derivations using AdS/CFT (Benini et al 2015, Pando-Zayas et al 2020)



Hawking evaporation
Stages of Black Hole Evaporation

(a) After stellar collapse, the
outside of the black hole is
nearly stationary, but on the
inside, the geometry contin-
ues to elongate in one di-
rection while pinching toward
zero size in the angular direc-
tions.

(b) The Hawking process creates entangled pairs, one trapped
behind the horizon and the other escaping to infinity where
it is observed as (approximate) blackbody radiation.

The black hole slowly shrinks
as its mass is carried away by
the radiation.

(c) Eventually the angular directions shrink to zero
size. This is the singularity. The event horizon also
shrinks to zero.

(d) At the end there is a smooth spacetime containing
thermal Hawking radiation but no black hole.

Figure 3
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FIG. 3: The Island is contained inside the entanglement
wedge of any pair of the three regions L, R and E . The two
regions L and R combined are in the thermal mixed state,
with entropy given by the area of the red RT surface.

According to our proposal, the connectedness of space-
time across an ER-bridge does not require that the black
hole region is in a pure maximally entangled TFD state.
Instead, the region around the ER bridge can be in a
thermal mixed double state with SBH worth of classical
correlations between the two sides; it is su�cient that the
quantum entanglement only resides in the code subspace
containing the low energy e↵ective QFT.

The balanced holography principle implies that the
quantum information inside the black hole and inside
the Island region is topologically protected [15]. This
protection is dynamically implemented via a restriction
that prevents the black hole from accumulating more
entropy than SBH . Instead the total state will evolve
into a GHZ like state of the form (25). In such a
state, the quantum information stored inside the Island
region can not be accessed from any one of the three
subregions L, R or E . Instead, it is accessible only
through combined knowledge of the state of at least two
of the three subregions. Hence the reconstruction of
the QFT operators inside the Island region involves a
similar quantum error correction mechanism as for bulk
reconstruction in AdS/CFT [16].

Our new holographic principle stands at odds with the
strong version of ER = EPR, which equates the existence
of a smooth ER-bridge with the presence of microscopic
entanglement, quantified by the Berkenstein-Hawking-
Ryu-Takayanagi entropy formula (1). So what gives?
It is important to point out, however, that the strong
ER = EPR implication amounts to a radical departure
from the usual rules of quantum mechanics: entangle-
ment is not a linear property of quantum states, so it is
highly unconventional to associate it with an observable
property of a macroscopic system. The aim and spirit of
our proposal is to refine the ER = EPR relation so that
it does not run counter to any conventional ground rules
of quantum mechanics.

The fact that the near-horizon region of a two sided
black hole can be in a mixed state plays a key role in
recent discussions of the Island rule for computing the
entropy of an evaporating black hole and its radiation.
Motivated by the new observation that an evaporating
two-sided black hole geometry supports a two-component
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TABLE I: REVTEX 4 Command Summary

REVTEX 4/LATEX2� Markup Details and Usage

Frequently Used Class Options

[aps] American Physical Society styling. Default.
[prl],[pra],[prb],[prc],[prd],[pre],[prstab] Further customize [aps] styling for Physical Review

journals.
[rmp] Further customize [aps] styling for Reviews of Modern

Physics.
[twocolumn] Two column formatting.
[onecolumn] Single column formatting.
[preprint] Single column formatting with increased interline

spacing.
[10pt],[11pt],[12pt] Set font size. [preprint] gives [12pt], [twocolumn]

gives [10pt] by default.
[groupedaddress] Group authors with same a�liations together.

Default.
[superscriptaddress] Associate authors with a�liations via superscript

numbers. Appropriate for collaborations or if several
authors share some, but not all, a�liations.

[draft] Mark overfull lines.
[amsfonts],[noamsfonts] Load (don’t load) amsfonts package. Adds AMS font

support.
[amssymb], [noamssymb] Load (don’t load) amssymb package. Adds additional

AMS symbols.
[amsmath], [noamsmath] Load (don’t load) amsmath package. Adds AMS-LATEX

features.

Other Class Options

[preprintnumbers],[nopreprintnumbers] Control display of preprint numbers given by
\preprint command. [preprintnumbers] is default
for [preprint]; otherwise [nopreprintnumbers] is
default.

[floatfix] Invoke emergency processing to avoid the LATEX error
‘‘Too many unprocessed floats’’ or all subsequent
floats being moved to the end of the job. REVTEX 4
will display a message recommending this option if
warranted.

[bibnotes],[nobibnotes] Control location of author footnotes. Default varies
with journal style.

[footinbib],[nofootinbib] Control location of footnotes. Default varies with jour-
nal style.
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FIG. 4: Penrose diagram of an ER bridge with an Island
region, bounded by two quantum extremal surfaces.

quantum extremal surface demarcating an Island region
inside the interior, the authors of [13] propose the follow-
ing generalization of the holographic entropy formula for
the von Neumann entropy of the near-horizon region of
a two sided black hole

S(L [ R) = extQ


Area(Q)

4GN

+ Sqft(L [ R)

�
(49)

Here Q indicates the location of the quantum extremal
surface [7]-[8]. By definition, this location extremizes the
sum of the area contribution of the quantum extremal
surface and the von Neumann entropy of the e↵ective
QFT state inside the near-horizon region L [ R [32].

As noted in [13], equation (49) has a complement in
the form of the following formula for the von Neumann
entropy of (the Hawking radiation contained inside) the
environment E

S(E) = extQ


Area(Q)

4GN

+ Sqft(I [ E)

�
(50)

The right-hand side of (49) and (50) are both identical –
as it should, since the total state on L[R[E is assumed
to be a pure state.

How do equations (49) and (50) stand in relation to
with our proposed holographic bound? The quantum
extremal surface Q jumps into existence right at the
Page time, i.e. at the future time slice at which the
entropy of the black hole becomes equal or smaller than
the entropy of the emitted Hawking radiation. Assuming
the naive Page dynamics applies, this transition happens
at the moment the black hole has transferred half its
initial entropy to the radiation, or in other words, when
the black hole horizon area has decreased to half the
initial size. Based on this physical reasoning, we would
infer that the two components of the quantum extremal
surface Q combined have the same total area as the event
horizon H of the initial two-sided black hole at t = 0

Area(Q)

4GN

' Area(H)

4GN

= SBH (51)

This relation would align the analysis of [13] with the
present story: the left-hand side equals the entropy of
the near-horizon region of the two-sided black hole, and
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Figure 3. Progress on the information paradox. (a) Black hole evaporation. An island

(green) bounded by a quantum extremal surface (blue) appears at late stages in the evapo-

ration. (b) The von Neumann entropy of Hawking radiation: Hawking’s calculation (dashed

red) leads to a paradox when the radiation entropy exceeds the black hole entropy (dashed

gray). If black hole evaporation is unitary, then the true entropy should follow the Page curve

(blue). (c) Two copies of the black hole can be used to probe the quantum information in

the radiation. At late times, spacetime wormholes join the black hole interiors. This leads to

the creation of islands, which in turn produce the unitary Page curve.

curvature, this contradiction constitutes an apparent violation of e↵ective field theory

in a regime where strong quantum gravity corrections should be suppressed.

The behavior of the radiation entropy expected from unitary evaporation is known

as the Page curve [22] (Figure 3b). It is this universal curve that was determined quan-
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connection to quantum energy conditions [102, 103]. These conditions generalize the

well known null energy condition that plays an important role in constraining the causal

structure of classical general relativity and underlies the celebrated Penrose singularity

theorem [104].

Causal aspects of semi-classical gravity, which includes leading order quantum cor-

rections, are often usefully constrained by the Quantum Focusing Conjecture [102, 105–

108]. For example, the Quantum Focusing Conjecture can be used to prove a basic

causal constraint on entanglement wedge reconstruction - that bulk regions should nest

when the corresponding boundary regions nest [16, 109]. As shown in [54], entan-

glement wedge nesting is indeed connected to analyticity in modular time, a further

constraint on the correlation functions discussed above that arises for theories satu-

rating the modular chaos bound. This line of reasoning has been particularly fruitful,

leading to proofs of energy conditions in QFT [103, 110] without gravity.6

These developments have highlighted a deep connection between AdS/CFT and a

formal mathematical framework called Algebraic Quantum Field Theory, whose con-

structs are very natural from the quantum information theoretic point of view. This

abstract approach has provided powerful new tools and new insights into these issues.7

2.2 The information paradox

In defiance of a longstanding expectation, new calculations [20, 21] have produced

striking evidence that low energy, semiclassical gravity can detect unitarity in black

hole evaporation (see [119] for a review). These recent developments are summarized

in Figure 3. A sharp diagnostic of the information paradox is the von Neumann entropy

of Hawking radiation,

SR = �tr ⇢R ln ⇢R , (2.1)

where ⇢R is the density matrix of the radiation. Hawking’s calculation indicates that

⇢R is mixed and that SR grows monotonically as the black hole evaporates, while the

Bekenstein-Hawking entropy of the black hole,

SBH = Area/4G , (2.2)

decreases to zero. This leads to a contradiction: Unitarity requires SR ! 0 at late

times, because if the initial state of the black hole is pure then the final state of the

radiation must be pure also. Furthermore, general properties of entangled quantum

systems require SR  SBH. Since Hawking’s calculation takes place in a region of low

6Further applications of modular flow to these issues can be found in [53, 55, 111–114].
7See for example [88, 91, 92, 115–118].
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Page curve!

Good/bad news: only needed semiclassical gravity.
Thanks: V. Pasquarella



Black holes and generalised holography

• Wedge/codimension 2 holography 
• T- T deformations, subregions holography and dS to dS duality
• Von Neuman algebras and duality beyond large N
• Minkowski and celestial sphere

Islands, holography and cosmology?
(Islands and early universe? vacuum transitions? De Sitter entropy?)

__

e.g. Hartman, 2019
van Raamsdonk et al 2020-2022, 
Gorbenko et al 2021,
Bousso et al 2022.

Silverstein et al 2021

Witten et al 2021

Takayanagi et al 2020

Strominger et al



Formal Theory and HEP

Formal≈String, …



Challenges for UV complete Models

• Gravity quantum
• Gauge and matter structure of SM
• Hierarchy of scales + masses (including neutrinos)

• Flavor CKM, PMNS mixing, CP no FCNC
• Hierarchy of gauge couplings (unification?)
• ‘Stable’ proton + baryogenesis
• Inflation or alternative for CMB fluctuations
• Dark matter (+ avoid overclosing)
• Dark radiation (Neff~3.04)
• Dark energy

N.B. If ONE of them does not work, rule out the model!!!



Compactification  

e.g. Calabi-Yau
Compactifications

and the 
Brane World



New tools: ML

• Machine (supervised and reinforcement) learning 

• Genetic algorithms

Lukas et al 2018-2019

Abel et al et al 2021

Review Ruehle Phys Rep. 2020

1. For model selection

2. Computing explicit metrics of Calabi-Yau manifolds

Anderson et al, Douglas et 
al, Jejjala et al  2020



Recent Progress

• N =1015 F-theory models with MSSM spectrum

• N>1023 heterotic models with MSSM spectrum

• Concrete MSSM models with moduli stabilisation

Cvetic et al 2019

Constantin et al 2019

Cicoli et al 2021



Three related questions

• Moduli stabilization

• De Sitter

• Inflation

7 Quantum Initial Conditions

One of the most remarkable features of inflation is that it provides a natural mechanism for

producing the initial conditions for the hot big bang. To see this, recall that the evolution of the

inflaton field �(t) governs the energy density of the early universe ⇢(t) and, hence, controls the end

of inflation (see Fig. 20). Essentially, the field � plays the role of a “clock” reading o↵ the amount

of inflationary expansion still to occur. By the uncertainty principle, arbitrarily precise timing is

not possible in quantum mechanics. Instead, quantum-mechanical clocks necessarily have some

variance, so the inflaton will have spatially varying fluctuations ��(t,x). There will therefore be

local di↵erences in the time when inflation ends, �t(x), so that di↵erent regions of space inflate

by di↵erent amounts. These di↵erences in the local expansion histories lead to di↵erences in the

local densities after inflation, �⇢(t,x), and to curvature perturbations in comoving gauge, ⇣(x).

It is worth remarking that the theory was not engineered to produce these fluctuations, but that

their origin is instead a natural consequence of treating inflation quantum mechanically.

Figure 20. Quantum fluctuations ��(t,x) around the classical background evolution �̄(t). Regions acquir-
ing negative fluctuations �� remain potential-dominated longer than regions with positive ��. Di↵erent
parts of the universe therefore undergo slightly di↵erent evolutions. After inflation, this induces density
fluctuations �⇢(t,x).

7.1 Quantum Fluctuations

7.1.1 Free Scalar in de Sitter

Before attacking the real problem of interest, namely the quantization of coupled inflaton-metric

fluctuations during inflation, we will consider the simpler case of a free scalar field in de Sitter

space. We will assume that the scalar field carries an insignificant amount of the total energy

density and, hence, doesn’t backreact on the de Sitter geometry. Such a field is sometimes called

a spectator field.

The action of a massless, free scalar field in de Sitter space is
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Figure 1: Scalar potential for A = 1, B = �25, C = 156.25, b0 = �b1 = 1.

H
0
=

�
A+B↵+ C↵

2
+ · · ·

�
�

H
00
=

�
2b1A↵+ 3(bB + b2A)↵

2
+ 4(b1C + b2B)↵

3
+ · · ·

�
�

H
0 �H

00
=

�
A+ (B � 2b1A)↵+ (C � 3b1B � 3b2A)↵

2
+ · · ·

�
� (1.8)

Then, using the leading order expression for the RG solution for ↵:

↵ ⇠ 1

b0 � b1 log ⌧
(1.9)

we can plug this in the in the scalar potential above and can search for minima of

the potential. Typically for small ↵ and coe�cients of order one the behaviour will

be a runaway, However for particular values of the coe�cients A,B,C, · · · there may

be non-trivial solutions. In particular, if C � B � A it is possible to find minima of

the potential for which ↵ ⌧ 1 and the value of the potential at the minimum can be

positive or negative.

2. Multiplicative Logs

Let us now slightly modify the log dependence on the Kähler potential.

K = �3 log ((T + T
⇤
)F (log(T + T

⇤
)) := �3 logP(⌧) (1.10)
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V

Figure 1: A plot of V vs ⌧ for the scalar potential V = U(ln ⌧)/⌧4, revealing a de Sitter or anti-de
Sitter minimum separated from a runaway by a local maximum. The plots are obtained using the
representative values k1/k3 = 0.01 and k2/k3 = �0.133 (arbitrary scale). The main text describes the
precise parameter range required to get de Sitter rather than anti-de Sitter or a runaway.

where U1 = 3k1b1|w0|2 and so on. Furthermore, the Dine-Seiberg argument leads one to

expect that any minima ⌧ = ⌧0 of this potential generically occur in the regime where ↵(⌧0) ⇠
O(1). But if stabilization of other moduli make ↵g0 small, then inspection of (2.10) shows

that ⌧0 must be very large because ↵g0 ln ⌧0 ' O(1).

This general argument can be made explicit purely using perturbative methods if we

arrange that the coe�cients U1, U2 and U3 appearing in the potential (2.6) with U given by

(2.11) are all positive and satisfy the mild hierarchy

����
U1

U2

���� ⇠
����
U2

U3

���� ⇠ O(✏) (2.12)

for some smallish ✏ ⌧ 1. Such a hierarchy allows solutions to @V/@⌧ |⌧0 = 0 for ↵0 ⇠ O(✏)

and so

b1 ln ⌧0 = ↵
�1
g0 � ✏

�1 (2.13)

can easily be order 1/✏ if ✏ ⌧ ↵g0 and b1 < 0. For ✏ <⇠ 1/10 the value predicted for ⌧0 can be

enormous ⌧0 ⇠ e
1/✏, justifying the validity of the 1/⌧ expansion ex post facto. As is easy to

check, when 9U2
2 > 32U1U3 the potential has a local minimum at ⌧0 that is separated from

the runaway to ⌧ ! 1 by a local maximum at ⌧1 > ⌧0 (see Fig. 1).

The value of the potential at this minimum is positive if U
2
2 < 4U1U3 and negative

otherwise. Although (2.11) and (2.12) might naively lead one to expect U(⌧0) ⇠ O(✏4) when

U3 ⇠ O(1), it happens that the condition V
0(⌧0) = 0 ensures that this leading contribution

cancels, making the result at the minimum instead U(⌧0) ⇠ O(✏5). As a result both V (⌧0)

and ⌧
2(@2

V/@⌧
2)
��
⌧0

are O(✏5|w0|2/⌧40 ), and this can be extremely small given that ⌧0 can be
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Dine-Seiberg Problem

V 𝟎 at weak coupling and large volume. 

Dine, Seiberg 1985

Only fully trust runaway part 
(swampland conjecture, Vafa et al)
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e.g. String Landscape from 
Flux compactifications



Two leading scenarios

• Non-perturbative vs tree level  (KKLT)

• Perturbative vs non-perturbative (LVS)

• Alternative? Perturbative 

Wrapped D7 Brane

RR Fluxes

NS Fluxes

Anti D3 Branes

Throat

Figure 1: Description of a deformed conifold with 3-form fluxes (a KS throat) embedded

in a compact geometry, with anti-D3-branes trapped at the tip of the throat. Beyond the

throat, the compactifications may include other ingredients, like D7-branes wrapped on

4-cycles, etc, which are not relevant for the generation of the warp factor on the throat,

but may lead to other interesting effects (like non-perturbative superpotentials).

embeds it into different possible compactification manifolds. This approach separates

the local properties of the models, such as the gauge group, the massless matter

spectrum, running of gauge coupling, etc, from properties depending strongly on the

global features of the compactification, such as supersymmetry breaking, scalar field

potentials, etc.

A large class of local D-brane configurations leading to chiral 4d world-volume

gauge sectors is provided by D3-branes (or D3-branes) at singularities. It is thus

natural to combine techniques of model building with D3-branes at singularities

with the construction of highly warped throats using deformed conifolds with fluxes.

Indeed in this paper we construct explicit geometries containing deformed conifolds,

and orbifold singularities sitting at the corresponding 3-spheres. Introduction of an

explicit set of suitable 3-form fluxes leads to a warped throat, with the compact

3-cycles and the orbifold singularity at its tip. Finally introducing a set of D3-branes

and D7-branes (all dynamically trapped at the tip of the throat) at the orbifold

3

compute the structure of �V . It takes schematically the form [37]:

�V / W
2
0 �K +W0�W (2.11)

If there were only one single expansion parameter and if, as usual, W0 � �W and �K �

�W (since perturbative terms dominate over non-perturbative terms at weak couplings),

the first term would be the leading order term. It would lift the potential but would

give rise to a runaway behaviour, unless di↵erent order terms compete to give rise to a

minimum which would happen only if the perturbative expansion breaks down and the

corresponding expansion parameter is not small. This is the Dine-Seiberg problem [61].

Flux compactifications in IIB allow two ways to overcome this issue. First, in the KKLT

scenario the big discrete degeneracy of flux vacua is used in such a way that W0 is tuned

to W0 ⇠ �W = Wnp. This then requires �W
2 terms to be also included in the expansion

stabilising the Ti fields when they compete with the W0�W terms. Notice that in this limit

the first term in �V above is of order �W 3 and is then subdominant. Justifying neglecting

quantum corrections to the Kähler potential.

In LVS the fact that there are more than one expansion parameters plays the key role.

In this case the two terms in equation (2.10) can compete with each other to provide a

minimum as long as each comes from a di↵erent expansion. In this case �K ⇠ W0�W which

for �K ⇠ 1/V and �W ⇠ e
�a⌧ implies that the volume is exponentially large V ⇠ e

a⌧ . Here

⌧ is usually a blow-up mode that gets stabilised to values of order 1/gs which is large at

weak string coupling gs and therefore the volume is exponentially large.

In summary KKLT requires tuning of the fluxes for W0 ⌧ 1 whereas LVS works for

standard values of W0 ⇠ O(1 � 100) (as it is found in concrete examples [117, 131]) but

depends more on the perturbative corrections to K. Notice that from the e
K factor in the

general expression for V the order of V0 is V0 ⇠ M
4
p /V

2
⇠ M

4
s whereas in LVS the order

of �V is �V ⇠ W
2
0M

4
p /V

3
⇠ M

2
sm

2
3/2 ⌧ M

4
s . Having V0 vanishing at the minimum and

�V ⌧ M
4
s supports the validity of using the EFT at scales below Ms.

2.2.2 Advantages

We would like here to emphasise several advantages of type IIB constructions:

1. Controlled flux backreaction: Background fluxes can be turned on to generate a po-

tential for the moduli in a controlled way since their backreaction on the internal

geometry just renders the compactification manifold conformally Calabi-Yau. There-

fore the understanding of the underlying moduli space is better than in other string

theories. Some progress has been made recently in computing the form of the Kähler

potential including the e↵ect of warping [62–69]. Notice that the warping induces

corrections to the definition of the correct moduli coordinates which are however

negligible at large volume.

2. Suppressed scalar potential scale: The starting point of dS models is the classical

low-energy limit of type IIB string theory compactified on an orientifold of a Calabi-

Yau threefold X. This is a controlled procedure if the compactification volume V ⌘
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e.g. Naturalness ?

Chapter 7. The Standard Model and its Limitations

Standard Model Lagrangian

LSM = Lgauge + Lkinetic

F
+ LYukawa

F
+ LHiggs . (7.10)

Let us perform a parameter count for the Standard Model:

Sector Parameters Physical Number

Gauge gs, g, gÕ, ◊G, ◊W , ◊B gs, e, cos(◊W ), ◊̄ 4

Higgs m2,⁄ mh,mW 2

mu

i
,md

i
,me

i
9

Yukawa yu
ij
, yd
ij
, ye
ij
(, y‹

ij
)ú VCKM 4

VPMNS 6?

m‹

i
,M‹R

i
3+?

Total 25+

Therefore we have more than 25 free parameters in the Standard Model. We do not
specify the number of parameters coming from the right-handed neutrinos since it is yet
not known how right-handed neutrinos will appear and couple and in particular their
number does not have to be restricted to the number of families as for the other fields
since right-handed neutrinos are simply fermions that do not couple to any of the gauge
fields of the Standard Model.

The SM Lagrangian (7.10) is renormalisable and can be expanded in terms of operators
of di�erent dimensions. Let us write

LSM =
ÿ

i

ciOi , [ci] + [Oi] = 4 . (7.11)

The dimensions of the individual operators Oi is

• [Oi] = 0: c0 = � is the constant term in the scalar potential (⁄v4/2 in the Higgs
potential. Once coupled to gravity would correspond to the cosmological constant

• [Oi] = 2: c2 = m2 with m2 the coe�cient in the quadratic term m2H2 of the HIggs
potential.

• [Oi] = 3: there is no dimension 3 operator in the Standard Model Lagrangian.
But if right-handed neutrinos are involved then the corresponding Majorana mass
c3 = M ‹ multiplying ‹R‹R = O3.

• [Oi] = 4: all the other terms implying the coe�cients (gauge couplings, Yukawa
couplings, ◊ terms are dimensionless).

Notice that:

• No mass terms allowed for gauge fields because of gauge invariance.
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Chapter 7. The Standard Model and its Limitations

7.2.3 Naturalness
• [Oi] = 0:The cosmological constant problem. The cosmological constant � corre-

sponds to energy of the vacuum

Rµ‹ ≠
1
2Rgµ‹ = 8fiGÈTµ‹Ívac ≥ �gµ‹ . (7.26)

Observations of the current acceleration of the universe have shown that

� ¥ (10≠3eV)4 (7.27)

The cuto� is the Planck scale MP ≥ 1019GeV and

�
M4

P

≥ 10≠123 π 1 . (7.28)

So naturally quantum corrections to � in the form of vacuum amplitudes are quar-
tically divergent and would naturally bring � ≥ M4

P
. In order to avoid that, the

renormalisation procedure has to be done to cancel this divergence and keep � small
this would require a (doable) fine-tuning of 123 decimal figures. The problem be-
comes more relevant since this is an issue that happens at all scales. There are
contributions to the vacuum energy from all sources of the standard model. For
instance the Higgs potential, this would require a tuning of 60 decimal figures (since
�/ÈHÍ4 ≥ 10≠60), similarly for the QCD vacuum all the way to the electron mass.
This is the biggest puzzle in physics given the huge amount of fine tuning required.
This has been a puzzle for more than 50 years. Originally it was thought that � = 0
and the puzzle was to explain why it vanishes. After the discovery of the current
acceleration of the universe the problem became even more di�cult since explaining
such a small number from first principles looks hopeless. This problem has now
been named dark energy since the real problem is to explain the cause of this ac-
celeration. A non-vanishing cosmological constant is the simplest explanation but
other explanation may be possible. So far with no success.

• [Oi] = 2 : The hierarchy problem. Only the Higgs field has an allowed mass term
in the Lagrangian m2|H|2. At tree-level this can be seen as an insertion on a Higgs
line:

Experimentally we know that mh ≥ 125GeV4. Also, contrary to gauge and fermion
fields, there are quantum corrections to the Higgs mass:

+ . . .

These diagrams are quadratically divergent (≥
s
d4k/k2) and therefore give a cor-

rection to the Higgs mass of order: m2

h
æ M2

cuto�
. Since the Standard Model is

renormalisable the only known cut-o� at the moment is the Planck scale. This
4Recall that the physical mass of the Higgs mh is not identical to the parameter m in the Lagrangian

but it is proportional to it.
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Observations of the current acceleration of the universe have shown that

� ¥ (10≠3eV)4 (7.27)

The cuto� is the Planck scale MP ≥ 1019GeV and

�
M4

P

≥ 10≠123 π 1 . (7.28)

So naturally quantum corrections to � in the form of vacuum amplitudes are quar-
tically divergent and would naturally bring � ≥ M4

P
. In order to avoid that, the

renormalisation procedure has to be done to cancel this divergence and keep � small
this would require a (doable) fine-tuning of 123 decimal figures. The problem be-
comes more relevant since this is an issue that happens at all scales. There are
contributions to the vacuum energy from all sources of the standard model. For
instance the Higgs potential, this would require a tuning of 60 decimal figures (since
�/ÈHÍ4 ≥ 10≠60), similarly for the QCD vacuum all the way to the electron mass.
This is the biggest puzzle in physics given the huge amount of fine tuning required.
This has been a puzzle for more than 50 years. Originally it was thought that � = 0
and the puzzle was to explain why it vanishes. After the discovery of the current
acceleration of the universe the problem became even more di�cult since explaining
such a small number from first principles looks hopeless. This problem has now
been named dark energy since the real problem is to explain the cause of this ac-
celeration. A non-vanishing cosmological constant is the simplest explanation but
other explanation may be possible. So far with no success.

• [Oi] = 2 : The hierarchy problem. Only the Higgs field has an allowed mass term
in the Lagrangian m2|H|2. At tree-level this can be seen as an insertion on a Higgs
line:

Experimentally we know that mh ≥ 125GeV4. Also, contrary to gauge and fermion
fields, there are quantum corrections to the Higgs mass:

+ . . .

These diagrams are quadratically divergent (≥
s
d4k/k2) and therefore give a cor-

rection to the Higgs mass of order: m2

h
æ M2

cuto�
. Since the Standard Model is

renormalisable the only known cut-o� at the moment is the Planck scale. This
4Recall that the physical mass of the Higgs mh is not identical to the parameter m in the Lagrangian

but it is proportional to it.
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would then imply that a fine tuning has to be made to quantum corrections up to
15 decimal figures:

mh

MP

≥ 10≠15 (7.29)

This is what is called the hierarchy problem. This has played an important role in
the past 30 years since to prevent the Higgs mass to become higher than its measured
value, the natural expectation is new physics at scales close to the Higgs mass (so
that we can replace the cut-o� scale by something one or two orders higher than the
Higgs mass but not much more). Expectations that the energies explored by the
LHC would uncover that new physics are still on, but nothing has been detected,
meaning that already the level of fine tuning is of order one percent. Not dramatic
but still without a proper explanation.

• [Oi] = 4 : The Strong CP problem. We know that the ◊ term in the QCD La-
grangian:

L◊ = ◊3

g2

s

64fi2
‘µ‹fl‡GA

µ‹
GA

fl‡
(7.30)

can be rotated away by suitable field redefinitions for the quark fields at the prize
of introducing a phase in the quarks mass matrix. This means that we can change
back and forth the phase ◊3 from the ◊ term to the quark mass terms. But there is
an invariant physical phase which is: ◊̄ © ◊3≠

q
6

j=1
argmj = ◊3≠arg r

6

j=1
mj. This

means that we cannot rotate away the ◊3 term by the chiral rotations since would
move the CP violating phase from the ◊ term to the mass matrix.
However, experimentally, the e�ective dipole moment of the neutron N , which in
an EFT would come from a CP violating term

Ledm = dn‘
µ‹fl‡N̄“µ‹NFfl‡ (7.31)

The origin of this term is the CP violating part of QCD and is therefore proportional
to ◊̄. In a EFT of hadrons it can be induced by a loop of fi≠ and proton coupled to
external lines of two neutrons and one photon. The Feynman diagram calculation
gives:

dn ≥
em2

fi

m3

N

◊̄ ≥ 10≠16e◊̄

and experimentally dn Æ 10≠26e implying that ◊̄ Æ 10≠10. Explaining why ◊̄ is such
a small number is the strong CP problem.

7.2.4 Flavour Problems

Why questions

The flavour sector is the least elegant part of the Standard Model with three families (six
flavours) of matter particles. It actually leads to several puzzles:

• First is the fact that the matter we know is made only of u and d quarks and the
electron. The first question is why there are 2 more families of essentially identical
particles di�ering only in mass with the first family (and decaying to them by
di�erent interactions).
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Standard Model Lagrangian

LSM = Lgauge + Lkinetic

F
+ LYukawa

F
+ LHiggs . (7.10)

Let us perform a parameter count for the Standard Model:

Sector Parameters Physical Number

Gauge gs, g, gÕ, ◊G, ◊W , ◊B gs, e, cos(◊W ), ◊̄ 4

Higgs m2,⁄ mh,mW 2

mu

i
,md

i
,me

i
9

Yukawa yu
ij
, yd
ij
, ye
ij
(, y‹

ij
)ú VCKM 4

VPMNS 6?

m‹

i
,M‹R

i
3+?

Total 25+

Therefore we have more than 25 free parameters in the Standard Model. We do not
specify the number of parameters coming from the right-handed neutrinos since it is yet
not known how right-handed neutrinos will appear and couple and in particular their
number does not have to be restricted to the number of families as for the other fields
since right-handed neutrinos are simply fermions that do not couple to any of the gauge
fields of the Standard Model.

The SM Lagrangian (7.10) is renormalisable and can be expanded in terms of operators
of di�erent dimensions. Let us write

LSM =
ÿ

i

ciOi , [ci] + [Oi] = 4 . (7.11)

The dimensions of the individual operators Oi is

• [Oi] = 0: c0 = � is the constant term in the scalar potential (⁄v4/2 in the Higgs
potential. Once coupled to gravity would correspond to the cosmological constant

• [Oi] = 2: c2 = m2 with m2 the coe�cient in the quadratic term m2H2 of the HIggs
potential.

• [Oi] = 3: there is no dimension 3 operator in the Standard Model Lagrangian.
But if right-handed neutrinos are involved then the corresponding Majorana mass
c3 = M ‹ multiplying ‹R‹R = O3.

• [Oi] = 4: all the other terms implying the coe�cients (gauge couplings, Yukawa
couplings, ◊ terms are dimensionless).

Notice that:

• No mass terms allowed for gauge fields because of gauge invariance.
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After two introductory chapters to put our work in perspective we present our main

results in chapter 4,5,6. In chapter 4 we apply the Hamiltonian formalism of FMP of

vacuum transitions to JT gravity. In this context, instead of following the standard CDL

approach of a scalar field potential with two di↵erent minima to study tunneling, FMP

consider simply an action in spherical coordinates for which for the radius r < r̂ there is

one cosmological constant and for r > r̂ a di↵erent cosmological constant with a wall or

brane component separating both spacetimes at r = r̂ contributing to the action through is

tension �. Explicitly in 4D: The standard Hamiltonian constraints and matching conditions

are solved to find the configuration that correspond to the time evolution of the wall.

Contrary to CDL this is a manifestly Lorentzian approach and given the simplicity of the

matter action it allows explicit calculations and captures the dynamics of bubble nucleation

without the need of considering scalar potentials. The analysis should match CDL in the

thin wall approximation.

m
2
H

2 = O2 (1.1)

– 2 –

Cosmological constant problem

Right handed neutrino mass term ?

All other terms in SM

Hierarchy problem

.

.

. Higher order operators SMEFT



Can we address both problems at once?

• String landscape (Weinberg-Bousso-Polchinski+… )

Worst solution to the cc problem with the exception of all the others!

• Alternatives?

But: not yet a full solution (de Sitter, populating the landscape, measure problem,…)

Quintessence at least as difficult as dS!
Cicoli et al 2021



Challenges to KKLT, LVS,...
• Fluxes under control only in SUSY 10D? (Sethi, Kachru-Trivedi, de Alwis et al…)

• All SUSY breaking part is 4D EFT. Trust EFT?(Carta, et al, Moritz et al, Kallosh, Gautason

et al, Hamada et al, Kachru et al.)

• Higher corrections in LVS? (Cicoli et al.)

• Antibranes (non susy, singularity?) (Bena et al, Moritz et al, Cohen-Maldonado et al, Gao  et al) 

• Tadpole problem (Bena et al., Crino et al, Junghans, Xin Gao et al, Vafa et al…)

• Consistency with AdS/CFT (de Alwis et al, Conlon et al, Vafa et al…)

• Tuning W0<<1? in KKLT (Demirtas et al, Alvarez-Garcia et al, Blumenhagen et al)



e.g. String Theory and Cosmology



Inflation

ΛCDM + inflation
(source of almost scale invariant, gaussian,
adiabatic density perturbations)

Note: There is no  theory behind (origin of dark matter, dark energy, inflation, etc.)

7 Quantum Initial Conditions

One of the most remarkable features of inflation is that it provides a natural mechanism for

producing the initial conditions for the hot big bang. To see this, recall that the evolution of the

inflaton field �(t) governs the energy density of the early universe ⇢(t) and, hence, controls the end

of inflation (see Fig. 20). Essentially, the field � plays the role of a “clock” reading o↵ the amount

of inflationary expansion still to occur. By the uncertainty principle, arbitrarily precise timing is

not possible in quantum mechanics. Instead, quantum-mechanical clocks necessarily have some

variance, so the inflaton will have spatially varying fluctuations ��(t,x). There will therefore be

local di↵erences in the time when inflation ends, �t(x), so that di↵erent regions of space inflate

by di↵erent amounts. These di↵erences in the local expansion histories lead to di↵erences in the

local densities after inflation, �⇢(t,x), and to curvature perturbations in comoving gauge, ⇣(x).

It is worth remarking that the theory was not engineered to produce these fluctuations, but that

their origin is instead a natural consequence of treating inflation quantum mechanically.

Figure 20. Quantum fluctuations ��(t,x) around the classical background evolution �̄(t). Regions acquir-
ing negative fluctuations �� remain potential-dominated longer than regions with positive ��. Di↵erent
parts of the universe therefore undergo slightly di↵erent evolutions. After inflation, this induces density
fluctuations �⇢(t,x).

7.1 Quantum Fluctuations

7.1.1 Free Scalar in de Sitter

Before attacking the real problem of interest, namely the quantization of coupled inflaton-metric

fluctuations during inflation, we will consider the simpler case of a free scalar field in de Sitter

space. We will assume that the scalar field carries an insignificant amount of the total energy

density and, hence, doesn’t backreact on the de Sitter geometry. Such a field is sometimes called

a spectator field.

The action of a massless, free scalar field in de Sitter space is

S =
1

2

Z
d4x

p
�g gµ⌫@µ'@⌫'

=
1

2

Z
d⌧ d3x a2

h
'̇2 � (@i')2

i
, (7.1)
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String Scenario ns r

D3/D3 Inflation 0.966  ns  0.972 r  10�5

InflectionPoint Inflation 0.92  ns  0.93 r  10�6

DBI Inflation 0.93  ns  0.93 r  10�7

WilsonLine Inflation 0.96  ns  0.97 r  10�10

D3/D7 Inflation 0.95  ns  0.97 10�12
 r  10�5

Racetrack Inflation 0.95  ns  0.96 r  10�8

N� flation 0.93  ns  0.95 r  10�3

AxionMonodromy 0.97  ns  0.98 0.04  r  0.07

KahlerModuli Inflation 0.96  ns  0.967 r  10�10

Fibre Inflation 0.965  ns  0.97 0.0057  r  0.007

Poly � instanton Inflation 0.95  ns  0.97 r  10�5

,

Of the models depicted, ‘D3/D3 inflation’ [15] represents the predictions of the first bona-

fide string implementation of brane-antibrane inflation [16, 17], including modulus stabilisa-

tion. The orange oval marked ‘D3/D7 inflation’ [30] and the light green oval marked ‘closed

string inflation’ represent the predictions of a broad class of models [32, 48, 51, 52, 55, 56]

which di↵er somewhat in their predictions for ⌘, but all find ✏ too small to show r non-zero on

the plot. Notice that similar predictions are obtained in models where inflation is obtained

from wrapped D-branes [57], inflection points [19], Wilson lines [26] or non-canonical kinetic

terms [21]. All of these models describe the observed fluctuations very well, and much better

than simple single-field �
2 models.

Apart from ‘N-flation’ [33] which su↵ers from the control issues mentioned above, only

two of the string models, ‘Axion monodromy inflation’ [37] and ‘Fibre inflation’ [50], predict

r large enough to be visible on the plot. These two were specifically designed for the purpose

of obtaining large r, since it had been remarked that small r appeared to be generic to string-

inflationary models. They both score reasonably well for the ⌘-problem, but both have also

been criticized. Ref. [38] argues that the lack of supersymmetry in the models of ref. [37]

can make it more di�cult to control the corrections to leading predictions, with potentially

significant back-reaction e↵ects. The ‘Fibre inflation’ model builds on the hierarchy of masses

that loops and higher-derivative corrections introduce into the low-energy potential, but in

the absence of their explicit calculation must use an educated guess for their detailed shape.

– 15 –

Concrete Models of String Inflation

Burgess, Cicoli, FQ 2013

Challenges: eta problem, scales (KL problem), moduli stabilisation, observations?



This limitation of ⇠-attractors disappears if one considers a more general class of models

with nonminimal coupling of scalars to gravity

LJp
�g

=
1

2
⌦(�)R � 1

2
KJ(�)(@�)2 � VJ(�) . (3.7)

One can show that for certain relations between ⌦(�), KJ(�) and VJ(�) this theory in the

Einstein frame becomes equivalent to the theory of ↵-attractors [9]. Therefore in this more

general context one can describe any small values of r.

4 Special cases

So far we presented T- and E-models with a continuous value of ↵, which at small ↵ reach the

attractor point with cosmological predictions depending on the number of e-foldings and ↵ as

shown in (2.5). One can implement these models in the minimal N = 1 supergravity, where

the parameter 3↵ is given by 3↵ = 1
2 |RK |. Here |RK | is the curvature of Kähler geometry

[7]. In the context of the Poincaré hyperbolic disk geometry, representing an Escher disk,

R2
Esher = 3↵ defines the size of the disk [10].

Figure 7: This figure (courtesy of R. Flauger) shows the 7 Poincaré disks of the T-model of ↵-attractors as

green lines, as well as Higgs inflation, R2 inflation and fibre inflation [22].

The most interesting B-mode targets in this class of cosmological attractor models are

the ones with the discrete values of 3↵ = 7, 6, 5, 4, 3, 2, 1 [23–26]. These models of Poincaré

disks are inspired by string theory, M-theory and maximal supergravity. They are known in

cosmology community, see for example the plot of R. Flauger presented in his talk at CMB-S4

collaboration meeting in 2021. We present it here in Fig. 7.

– 8 –

Recent BICEP/KECK 2021 results

Contents

1 Introduction 1

2 ↵-attractors 2

2.1 T-models 2

2.2 E-models 4

3 Other examples of cosmological attractors 5

3.1 Pole inflation, D-brane inflation 5

3.2 ⇠-atttractors 7

4 Special cases 8

5 Discussion 10

1 Introduction

The new data release from BICEP/Keck considerably strengthened bounds on the tensor to

scalar ratio r [1]: r0.05 = 0.014+0.010
�0.011 (r0.05 < 0.036 at 95% confidence). The main results

are illustrated in [1] by a figure describing combined constraints on ns and r, which we

reproduce here in Fig. 1. These new results have important implications for the development

of inflationary cosmology. In particular, the standard version of natural inflation as well as

the full class of monomial potentials V ⇠ �n are now strongly disfavored.

Figure 1: BICEP/Keck results for ns and r [1]. The 1� and 2� areas are represented by dark blue and light

blue colors. The purple region shows natural inflation, and the orange band corresponds to inflation driven by

scalar field with canonical kinetic terms and monomial potentials.

– 1 –

From Flauger 2021 (see Kallosh-Linde)
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Correlations: e.g. Kallosh-Linde problem

it to a height greater than the height of the barrier, see Fig. 1. In typical KKLT-type

models this leads to vacuum destabilization if the added energy density V (φ)/σn, which is

responsible for inflation, is much greater than the height of the barrier Vbarrier ! 3m2
3/2M

2
P .

Since H2 ∼ ∆V (φ,σ)/3, this leads to the bound (1.1) (see [3] for a more detailed discussion

of this issue, while a similar problem in a slightly different context was also found in [4]).

100 150 200 250 Σ

1

2

3

4

V

Figure 1: The lowest curve with dS minimum is the potential of the KKLT model. The second
one shows what happens to the volume modulus potential when the inflaton potential Vinfl = V (φ)

σ3

added to the KKLT potential. The top curve shows that when the inflaton potential becomes too
large, the barrier disappears, and the internal space decompactifies. This explains the constraint
H ! m3/2.

In KKLT-based models, it therefore seems that for a gravitino mass m3/2 ∼ 1TeV the

Hubble constant during the last stages of a string theory inflation model should be quite

low, H ! 1 TeV, which is ten orders of magnitude below the often discussed GUT inflation

scale. Therefore if one believes in standard SUSY phenomenology with m3/2 ! O(1) TeV,

one should find a realistic particle physics model where the nonperturbative string theory

dynamics occurs at the LHC scale or even lower (the mass of the volume modulus in the

KKLT scenario typically is not much greater than the gravitino mass), and inflation occurs

at a density at least 30 orders of magnitude below the Planck energy density [3]. For a

recent analysis of this issue see e.g. [5] and for a discussion in the context of the heterotic

string see [6].

This problem is quite generic. For example, recently a new interesting mechanism of

moduli stabilization was proposed, which is based on the models with compacification on Nil

manifolds with negative curvature [7]. This mechanism presents a significant modification

of the compactifications on flat Calabi-Yau spaces, as suggested by the assumption of the

low scale supersymmetry. And yet, the same constraint H ! m3/2 remains valid for the

inflationary models in this scenario [8].

The situation becomes even trickier in the large volume models of vacuum stabilization

[2]. In such models the height of the barrier is much smaller, Vbarrier ∼ m3
3/2MP . In this

case, the constraint that the inflaton potential should not be much greater than the height

– 2 –

seed for an attractor solution. In the third stage, the presence of small initial quantities

of radiation drives the fields to an attractor solution. The attractor solution applies dur-

ing the runaway epoch and dissipates energy. The scaling nature of the attractor solution

avoids overshooting and guides the fields into the global minimum of the potential in which

m3/2 ∼ 1 TeV.2 This scenario is illustrated in Fig. 2.

The justification for the existence of a minimum at very large values of the volume,

far along the runaway direction, is the large volume scenario [2], where the inclusion of α′

corrections into the KKLT framework generates a new minimum of the scalar potential at

exponentially large values of the volume, with hierarchically small values of m3/2.

Inflation

Low−scale
vacuum

Volume)~ Log(Φ

V

4

4
  10     M   P

 P

 P

  10    M   
−18

−47

1.3M 19 MP

Figure 2: An illustration of the scenario put forward in this article. At relatively small vol-
ume, high-scale inflation occurs due to fine-tuned quantum corrections. After inflation the volume
modulus evolves over a long range of many Planck scales, eventually settling in the large volume
minimum with TeV gravitino mass. Although the barrier protecting from decompactification is
very small compared to the initial energies, an attractor solution guides the fields to the minimum
and prevents overshooting.

To illustrate this idea, we start by studying moduli evolution in the following toy model

describing a field Φ with a potential

V = V0

(

(1− ϵΦ3/2) e
−

q

27
2
Φ
+ C e−10Φ/

√
6 +D e−11Φ/

√
6 + δ e−

√
6Φ

)

. (2.1)

The particular form of this potential is motivated by that arising as the effective potential

for the volume modulus in the large volume models. The connection to the large volume

2For a recent discussion in the context of M-theory compactifications of the overshooting problem and

how to avoid it, see [27].
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low, H ! 1 TeV, which is ten orders of magnitude below the often discussed GUT inflation

scale. Therefore if one believes in standard SUSY phenomenology with m3/2 ! O(1) TeV,

one should find a realistic particle physics model where the nonperturbative string theory
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moduli stabilization was proposed, which is based on the models with compacification on Nil

manifolds with negative curvature [7]. This mechanism presents a significant modification

of the compactifications on flat Calabi-Yau spaces, as suggested by the assumption of the

low scale supersymmetry. And yet, the same constraint H ! m3/2 remains valid for the

inflationary models in this scenario [8].

The situation becomes even trickier in the large volume models of vacuum stabilization

[2]. In such models the height of the barrier is much smaller, Vbarrier ∼ m3
3/2MP . In this

case, the constraint that the inflaton potential should not be much greater than the height
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of the barrier leads to the bound (in units Mp = 1)

H ! m3/2
3/2 . (1.2)

For m3/2 ∼ 1 TeV this inequality implies that the Hubble constant during inflation in this

class of models [9, 10] cannot exceed O(1) KeV, which is an extremely strong constraint.

There do exist proposals of low-scale inflationary models, for example the so-called

MSSM inflation, which may occur for H ∼ 10 GeV or even for H ∼ 10 MeV [11]. Ref. [12]

also contains a discussion of models where inflation may occur at extremely low scales, with

an example of a model for whichH ∼ 10−7 eV. In particular, if the inflaton potential energy

at H ∼ 1 KeV could instantly transfer to thermal energy, the corresponding temperature

would be about 106 GeV, which is much greater than the critical temperature of the

phase transition in the standard model. If this instantaneous transition is achievable, the

temperatures would then be sufficiently high for the subsequent generation of a baryon

asymmetry.

One can find models with a very low-scale inflation in the context of the KKLT or

large volume scenarios, since the energy scale is exponentially sensitive to the parameter

a of the nonperturbative superpotential W = W0 + Ae−aT [1]. However, models of this

type are very non-traditional, and their parameters are substantially different from the

parameters of all current existing models of string theory inflation. Furthermore, as the

required value of the slow-roll epsilon parameter is given by ϵ ∼ (Einf/6× 1016GeV)4, low-

scale inflation substantially increases the amount of fine-tuning required in the inflaton

potential. It is important to know whether this tension between high-scale inflation and

TeV supersymmetry is unavoidable or whether it is simply a consequence of the assumptions

used so far in inflationary model-building.

This is not the first time that string theory and supergravity have encountered cosmo-

logical problems associated with the small value of the gravitino mass and of the moduli

fields. The famous gravitino problem and the cosmological moduli problem are haunting

us for more than two decades [13–15]. Now we see that the smallness of the gravitino

mass leads to an additional problem in the context of string cosmology [3,4]. This problem

would disappear if one would consider supersymmetric models with large gravitino mass,

for example [16, 17], or used a solution to the hierarchy problem different to that of TeV

supersymmetry.1

There exist ways to address this problem without increasing the value of the gravitino

mass. For example, one may consider KKLT models with the racetrack superpotential

containing at least two exponents and find parameters such that the supersymmetric min-

imum of the potential, even prior to uplifting, occurs at zero energy density [3], which

would mean m3/2 = 0. By a slight change of parameters in this class of models, which are

sometimes called KL models, one can get a gravitino mass that is nonzero but still much

smaller than the height of the barrier, removing the constraint H ! m3/2. In particular,

1For other problems with high values of the Hubble constant in string inflation see [18].
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2. Moduli can cause cosmological problems:

Polonyi ‘81, Coughlan & Ross ’83, Banks, Kaplan, Nelson ‘93, de Carlos, Casas, Quevedo, Roulet ’93. 
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Moduli and cosmology

Post-Inflation
(Moduli Domination)
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After Inflation

• Period of Moduli (matter) domination
• Or Kination + matter domination+radiation domination
• Oscillons or Oscillatons (boson stars)
• Reheating=moduli decay
• General constrain: dark radiation!
• Axiverse
• Potential signatures: High frequency Gravitational waves!!!

softMmm t| 2/3mod

GeV 10GeV 10 6
mod

4 ddm

GeV 1MeV 10 dd rhT

Cosmological evolution of dark radiation

+ 1409. 1931 Aparicio, MC, Krippendorf, Maharana, Muia, Quevedo 
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Abstract

The first direct measurement of gravitational waves by the LIGO and Virgo collaborations has
opened up new avenues to explore our Universe. This white paper outlines the challenges and
gains expected in gravitational wave searches at frequencies above the LIGO/Virgo band, with a
particular focus on the MHz and GHz range. The absence of known astrophysical sources in this
frequency range provides a unique opportunity to discover physics beyond the Standard Model
operating both in the early and late Universe, and we highlight some of the most promising
gravitational sources. We review several detector concepts which have been proposed to take
up this challenge, and compare their expected sensitivity with the signal strength predicted in
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Ultra High Frequency 
Gravitational Waves

https://indico.cern.ch/event/1074510/

See also:
http://www.ctc.cam.ac.uk/activities/UHF-GW.php



Inflation (extra-species)
Inflation (effective field theory)
Scalar perturbations
Preheating
Oscillons
Phase transitions
Cosmic strings
Metastable strings
Gauge textures

BBN bound
levitated sensors

bulk acoustic wave

interferometers magnetic conversion

Figure 1: Examples of stochastic sources of GWs. The green bands correspond to the frequency ranges probed by
levitated sensors, bulk acoustic wave devices and magnetic conversion detectors respectively, while the cyan band
corresponds to the frequency range probed by interferometers. See text for details.

Eq. (39)) to be bounded by the perturbative limit, and in the case of inflation described by
an e↵ective field theory with broken spatial reparametrization symmetry we have chosen the
speed of sound and the spectral tilt to be cT = 1 and nT = 0.2, respectively. Moreover,
inflation models with strongly enhanced scalar fluctuations (P⇣ . 10�2.5) can source GWs
with ⌦GW,0 . 10�9 at second order in cosmological perturbation theory.

• For preheating (Sec. 3.3.2), we show typical values for models with parametric resonance in
quadratic (right green box) and quartic (left green box) potentials as well as oscillons. In the
latter case the frequency is set by the mass of the scalar field through Eq. (45), where here
we have chosen the mass of the scalar field to be 1010 GeV < m < 1013 GeV with X = 100,
while the amplitude is the typical value inferred from numerical simulations.

• For phase transitions (Sec. 3.3.3), we assume a fixed latent heat, number of relativistic degrees
of freedom and wall velocity. We also assume that sound waves do not last a Hubble time,
such that the amplitude scales as the square of the inverse time scale of the transition. The
peak frequency and amplitude are then given by Eqs. (46) and (47), where we consider
transition temperatures T⇤ < 1016 GeV.

• As an example for topological defects (Sec. 3.3.4) cosmic strings lead to a broad spectrum with
an amplitude given Eq. (48), where the string tension for stable cosmic strings is bounded
by Gµ < 10�11 whereas for metastable cosmic strings it can by as large as Gµ ' 10�4 above
the LIGO frequency range. The spectrum of gauge textures is described by Eq. (50), where
here we have chosen the symmetry breaking scale to be 1012 GeV < v < 1019 GeV.

Fig. 2 shows representative examples of coherent sources. For simplicity, we take the factorq
2f
ḟ

converting between the amplitude and characteristic strain of a GW to be unity, which is a

good approximation at the merging frequency of compact objects. We moreover use a reference
value of 10 kpc for the distance to all sources.

• For the ringdown signal of neutron star mergers (Sec. 3.2.1) we depict a benchmark at
hc ' 5⇥ 10�21 and 1000 < f < 5000 Hz, see Fig. 3.

10

levitated sensors
bulk acoustic wave

interferometers magnetic conversion

Neutron stars
Primordial BHs
Exotic compact objects
Superradiance annihilation
Superradiance decay

Figure 2: Examples of coherent sources of GWs. The green bands correspond to the frequency ranges probed by
levitated sensors, bulk acoustic wave devices and magnetic conversion detectors respectively, while the cyan band
corresponds to the frequency range probed by interferometers. See text for details.

• For mergers of compact objects, i.e. primordial BHs (Sec. 3.2.2) and exotic compact objects
(Sec. 3.2.3) we take the masses of both merging partners to be equal and estimate the
maximal signal by determining for each frequency the maximal mass contributing to mergers
at this frequency (i.e. the mass corresponding to f = fISCO in Eq. (19) or Eq. (29)). For
the frequency range depicted, this corresponds to the mass range (10�9, 1)M� for primordial
BHs. For exotic compact objects, we vary the compactness as 5 ⇥ 10�2 < C < 1/2. The
amplitude of the oscillating GW signal is then given by Eqs. (21) and (30), respectively.

• For signals from axion superradiance we consider both the axion annihilation and axion decay
channel (see Sec. 3.2.4). The frequency of the signal is determined by the axion mass, which
is turn linked to the BH mass by the superradiance condition in Eq. (31). Inserting this into
Eq. (33) and Eq. (35) and taking ↵/l = 1/2, ✏ = 10�3 and MBH > M� yields the curves
depicted.

3.2 Late Universe

In this section we revise a number of sources that are relevant for high-frequency GW production
and are active in the late Universe. For a summary of these sources see Fig. 2 and Tab. 2 in
App. A.

3.2.1 Neutron star mergers

For not too high binary masses the merger of two neutron stars avoids the prompt collapse to a
BH and leads to the formation of a massive rapidly rotating and oscillating neutron star remnant.
The oscillations of this remnant are very characteristic of the incompletely known equation of state
of high-density matter and generate GW emission in the kHz range (see Fig. 3). For instance, the
dominant oscillation frequency of the post-merger phase (fpeak in Fig. 3) scales tightly with the
radii of non-rotating neutron stars [19]. These radii are uniquely determined by the equation of
state of neutron stars, and are therefore particularly valuable messengers of the underlying high-
density matter physics (see e.g. [20] for a review). Simulation results show a tight correlation
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The Swampland?



Landscape

Not consistent with 
quantum gravity

Consistent with 
quantum gravity

Swampland
[Vafa’06]

[Ooguri-Vafa’06]

I. Valenzuela



Swampland conjectures
• Swampland: Quantum gravity vs EFT !

• No global symmetries

• Weak gravity conjecture

• Distance conjecture                          

• ‘anti’- de Sitter conjecture:

(It would imply quintessence and no de Sitter 
and hard to have inflation!?).

• TransPlanckian Conjecture 

• Cobordism conjecture…

inflationary models. The conjecture states that everywhere in field space the full quantum

scalar potential V obeys the relation:

Mp
|rV |

V
& c , (1.1)

where c is an O(1) positive constant. It is important to examine whether such a criterion

can be consistent with phenomenology. The criterion (1.1) has many strong implications

for cosmology [9–11]. In particular it implies that at present we are necessarily in an

epoch of quintessence. The tight bounds on fifth-forces [12] and the time variation of

fundamental constants [13], provide strong constraints on the couplings of the quintessence

field. Furthermore, in the context of N = 1 supergravity it seems very hard to be able to

decouple a quintessence field from the Standard Model. Finally, depending on the model,

naturalness considerations require fine-tuning of the quintessence potential at the functional

level,1 or at least one additional tuning compared to dS models. This makes explicit

constructions of quintessence models from string compactifications very challenging.

This conjecture is the most recent of a series of articles claiming potential problems

with the standard approach to obtain a landscape of metastable dS string vacua as initiated

by the KKLT seminal paper [15] and followed-up by many other developments that have

improved the robustness of the original and other related scenarios. The challenges vary

from points of principle (e.g. how to properly define an S-matrix and a quantum theory in

general in dS space [16–18]) to details about each of the di↵erent steps of the KKLT scenario

[19–21] which seem to make it natural to explore alternatives to dS. The main purpose of

the first part of this article is to assess the pros and cons of the di↵erent approaches to dS

compactifications. This is important in order to have a clear idea of the assumptions used

and the continuous progress but also the open challenges. We will argue that dS models

reached a good level of concreteness and calculational control which has been improving

over time and provide interesting phenomenological applications to cosmology and particle

physics. Moreover we shall stress that some of the computational challenges apply also to

4D N = 1 supersymmetric vacua which, above all, do not seem to be promising starting

points for phenomenology. We will also point out that, even if dS string models are not

characterised by expansion parameters which can be made parametrically small, these

parameters can still be small enough to trust the phenomenological implications of these

constructions.

In the second part of the paper we first discuss the theoretical consistency of quintessence

models pointing out that in general, in the absence of a symmetry principle, their construc-

tion is more challenging that dS models since one needs to perform two fine-tunings to get

the correct energy scale and mass of the quintessence field. We then use a more phe-

nomenological approach to assess to which extent quintessence is a viable alternative to

dS from observations. In particular, we found (as recently shown also in [22]), that if

the quintessence picture is valid, and there is no other scalar field around other than the

Higgs, in order to satisfy the swampland conjecture (1.1), the Higgs field has to couple

1
A similar problem has been discussed in the context of attempts to explain time variation of coupling

constants in terms of a time varying field [14].
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Amplitudes/Bootstrap

• SAGEX

• Bootstrap constraints (Unitarity, locality, causality,…)

• Bootstrap and cosmology

• Amplitudehedron,…

• Bootstrap and swampland?

https://sagex.org/

e.g. Baumann et al 2020, Pajer et al 2021-22, Cespedes et al 2021
Review: 2203.08121

Review: 2202.11012

e.g. Arkani-Hamed et al 2012.15849



Conclusions

• Continuous steady progress

• Different avenues (black holes, holography, fluxes, dS, 

swampland, amplitudes, bootstrap, generalized symmetries,etc.)

• Potential contact with phenomenology/experiment 
(Gravitational waves, axions, cmb, …)

• Many open questions


