THE UNIVERSITY OF TOKYO CHARGED LEPTON FLAVOUR EXPERIMENTS

TOSHINORI MORI

HERE THE FOCUS IS ON <u>"NON-COLLIDER" EXPERIMENTS</u>

bottom

tau

tau neutrino

NEUTRINO OSCILLATIONS

NEUTRINO OSCILLATIONS

CHARGED LEPTON FLAVOR VIOLATION (CLFV)!

CHARGED LEPTONS SHOULD MIX!

TEV SCALE NEW PHYSICS HELP THEM MIX !

μ

CHARGED LEPTON FLAVOUR

BIG PICTURE

force unification charge quantization

Flavor violation from quark Yukawa

GUT

SUSY

Leptogenesis

seesaw mechanism neutrino masses

Flavor violation from neutrino Yukawa

TeV scale physics Dark Matter

 $\simeq 10^{-12}$

BOTTOM-UP: POSSIBLE INDICATIONS

Manuel Naviglio (Unipi, INFN Pisa)

muon g-2

Possible indications for lepton flavour anomalies at ~TeV scale

~ 2.7σ difference excl./incl.

ICHER202, $R(D^*)$

E **THE CURRENT STATUS:** -1 10 10⁻² $\mu \rightarrow e\gamma$ **10**⁻³ **10**⁻⁴ **10**⁻⁵ **10**⁻⁶ -7 10 Branching ratio upper limit 10 -9 10 **10**⁻¹⁰ 10⁻¹ **10**⁻¹² the smallest measured · **10**⁻¹³ branching ratio **10**⁻¹⁴ for an elementary particle **10**⁻¹⁵

RELATED PRESENTATIONS IN PARALLEL SESSIONS

MUON DECAYS & CONVERSIONS

Francesco Renga (MEG II) Sebastian Dittmeier (Mu3e) Jian Tang $(M \rightarrow \overline{M})$

MESON DECAYS

Dieter Ries (PIONEER) Viacheslav Duk (NA62)

Apologies for any topics that I missed...

LEPTON-FLAVOUR VIOLATING (LFV) PROCESSES OF MUON

11

MUON LFV PROCESSES

MUON LFV PROCESSES

- signal: monochromatic ~104MeV electron
- BG: beam-related prompt
- pulsed muon beam
- "extinction" of ~10⁻¹⁰

Iow mass tracker

μ^+
signal: kinema
BG: ac
DC mu
low ma
excelle
measu

- 2-body atics
- cidental
- ion beam
- ass tracker

ent gamma-ray rement

- signal: 3-body kinematics
- BG: accidental
- DC muon beam
 - low mass tracker

12

The second s

MUON LFV PROCESSES

gradient field spectrometer

low mass pixel tracker based on HV-MAPS

BG: accidental

<u>Mu3e</u>

s tracker

measurement

and the second of the second second of the second se

Klaus Kirch, PSI

HIMB in WEHA

MUON CLFV SENSITIVITY COMPARISONS

(SUSY)

1

: 1/390 : 1/170

BR = 2×10^{-14} : 5×10^{-17} : 1×10^{-16}

for AI target

PROSPECTS OF SENSITIVITY IMPROVEMENTS "My Rough Sketch"

superMEG?

CHARGED LEPTON FLAVOUR EXPERIMENTS / T. MORI MEGII – UPGRADE OF MEG Thin-wall SC solenoid (gradient B-filed: $1.3 \rightarrow 0.5 \text{ T}$) Liquid xenon photon detector (ε_v~70%, σ_E/E~1%) **x2 intensity** muon beam **x2 resolution** everywhere Continuous µ+ beam **x2** efficiency (7×10⁷ s⁻¹) M₽ M Search for $\mu^+ \rightarrow$ e+γ down to Pixelated timing counter 6×10-14 $(\sigma_t \simeq 35 \text{ ps})$ (90% C.L. Muon stopping target (170 µm-thick scintillating film) sensitivity) Cylindrical drift chamber $(\sim 1.6 \times 10^{-3} X_0, \sigma_p \sim 100 \text{ keV})$ Radiative decay counter

(identify high-energy BG γ events)

EPJ-C 78 (2018) 380

CHARGED LEPTON FLAVOUR EXPERIMENTS / T. MORI **RECENT HIGHLIGHTS (1)**

Timing Counter

Stable operation since 2017 - design resolution achieved: σ_T ~ 35 ps

> **Successful Engineering Run** in 2021 w/ full readout of all detectors

Drift Chamber

Stable operation in 2021 calibration, alignment, & reconstruction algorithm optimization ongoing

Liquid Xenon Photon Detector

A recovery procedure for degraded MPPC PDEs during beam time has been established.

CHARGED LEPTON FLAVOUR EXPERIMENTS / T. MORI WaveDream DAQ System **RECENT HIGHLIGHTS (2)**

Trigger and DAQ integrated in a single, compact system developed for MEG II.

- - Expected to be statistics-dominant
 - Evaluation of 2021 data is ongoing
- Starting physics DAQ this week!

GOING BEYOND $\mu \rightarrow e\gamma$

MEG searched for LFV muon decay mediated by a new light particle decaying into two gammastroductignal 2/Background Euro. Phys. J. C80, 858 (2020)

Feasibility studies for $\mu \rightarrow e + invisible$ and $\mu \rightarrow e \gamma + invisible$ at MEG II are also foreseen

MU2E EXPERIMENT

- Production Solenoid
 - pulsed proton beam hits production target
 - pions collected by the graded solenoidal magnetic field
- Transport Solenoid
 - pions decay to muons
 - charge and momentum selection

- Detector Solenoid
 - muons stop in thin Al foils
 - muonic atom decays
 - resulting electrons are detected by a tracker and a calorimeter
 - a cosmic ray veto covers the whole detector solenoid and half the transport solenoid (not shown)

PULSED PROTON BEAM & EXTINCTION

Backgrounds that are prompt with proton-on-target could be significant

- take advantage of muonic atom's long lifetime and use a pulsed beam to greatly reduce beam-related backgrounds
- we need extinction level (ratio of protons in and out of pulse) to be $< 10^{-10}$

MU2E CURRENT STATUS

tracker all straws produced

calorimeter all material ready CR test underway

Production & stopping targets assembled

CR veto module assembly

solenoidsall coils for PS & TS andcold mass for TS are fabricated

MU2E RUN 1 SENSITIVITY

We recently completed a sensitivity estimate for Run 1

- 5 σ discovery $R_{\mu \rightarrow e} = 1.1 \times 10^{-15}$
- 90% CL $R_{\mu
 ightarrow e} < 5.9 imes 10^{-16}$
- 1000x better than SINDRUM-II limit
- paper to be submitted to *Universe*

Total background:

- 0.11 ± 0.03 (stat.+syst.) events
 - cosmics = 0.05 ± 0.01 events
 - DIO = 0.04 ± 0.02 events

• Detector commissioning through to late 2024

• Take Run 1 data in 2025 and 2026 until LBNF/PIP-II shutdown

- x1000 improvement over SINDRUM-II
- Resume data collection in 2029 after long shutdown
 - x10000 improvements over SINDRUM-II

Signal and Background PDFs for $R_{\mu \rightarrow e} = 10^{-15}$

COMET Phase I & II

Target Sensitivity <10⁻¹⁴ with 3.2kW beam

- **Proton beam line** construction in progress to be completed in **FY2021**
- **Graphite** as a pion production target \bullet
- Pion Capture Solenoid construction is in the 2nd year • of multi-year construction contract (FY2020-2022)
- **Physics Detector**
 - CDC and hodoscope in a solenoid
 - Muon stopping target (AI) at the center of the solenoid

Beam engineering run in FY2022 and physics in FY2023.

Target Sensitivity <10⁻¹⁶ with 56 kW beam

- Extension of muon transport solenoid to cope with higher proton beam power
 - More efficient beam background suppression
 - Pions decay to muons in longer transport
- **Tungsten alloy** as a pion production target ۲
- **Electron spectrometer solenoid** to suppress the detector counting rate
- Physics detector \bullet
 - Straw-tube tracker and LYSO calorimeter
 - Muon stopping target (Al + others) in a gradient magnetic field for the purpose of signal electron collection with a magnetic lens

J-PARC T78 Beam Extinction Measurement

- COMET dedicated beam operation at 8GeV
- Extremely 'purely' pulsed proton beam to suppress BG

• $R_{ext} = \frac{\# \text{ proton in} - between \text{ pulses}}{\# \text{ proton in a puluse}} < 10^{-11}$

- R_{ext} measurement with secondary pion beam
- Confirmed 10⁻¹⁰ R_{ext}
 - Sufficiently low for Phase-I

COMET Phase-

• Proton transport beamline

- Ready in FY2021
- Beam engineering run with a thin graphite target in FY2022. Proton beam diagnostics & backward pion production (@8GeV) as well as background survey like anti-protons.

Solenoid magnet system

- Pion capture solenoid (PCS) to be ready in FY2022
 - Cold mass assembly (FY2020), Cryostat construction (FY2021), and final assembly (FY2022)
- Cryogenics system to be ready in FY2022 for the engineering run
- Physics detector in preparation by the COMET collaboration toward Physics run in FY2023-2024

COMET Phase- α : an engineering run before starting physics

- Need a reliable estimate of the number of **muons** reaching the muon stopping target (and other particles – π^{\pm} , e[±])
 - No data available of particle (backward) production in the p+A reaction at 8GeV
 - Large ambiguity of **anti-proton** production cross section as it is close to the threshold

Proton beam diagnostics w/o PCS

- Profile and beam extinction factor
- Once PCS installed, there is no sufficient space around the pion production target

- 300W proton beam
- 9.2 sec acceleration cycle ullet
- 0.8 sec extraction time with ullet
 - 1.17µsec pulse timing structure

Schedule of Phase-α and Phase-I

- 8GeV test and R_{ext} measurement in May 2021
- Phase- α Eng. Run in FY2022
- Phase-I Phys. Run in FY2023

C-Line Construction PCS Construction PCS test T78 Phase-a PCS Installation R_{ext} Meas. PCS Return Yoke and Stage Phase-I PCS Power Supply Cryogenics MTS Test Air Sealing Radiation Shield for Phase-... Beam dump PCS Cu Shield Construction PCS Cu Shield Installation

Experiment Area Construction Radiation Shield for Phase-I

Jan-19 Jan-20 Jan-21 Jan-22 Jan-23 Jan-24

Proton Beamline for COMET Phase-α

DEEME EXPERIMENT

Pulsed proton beams from 3 GeV RCS (fast extraction)

 \bullet

Momentum reconstruction successful.

More beam-time expected later this year (details are not fixed yet).

THE MU3E EXPERIMENT

• The Mu3e experiment aims to search for $\mu^+ \rightarrow e^+ e^-$ with a sensitivity of ~10⁻¹⁵ (Phase I) up to down ~10⁻¹⁶ (Phase II). Previous upper limit BR($\mu^+ \rightarrow e^+ e^-$) $\leq 1 \times 10^{-12}$ @90 C.L. by SINDRUM experiment)

MU3E – LATEST NEWS AND CURRENTS STATUS

- Cosmic Ray Run ongoing outside the experimental area with all sub-detector services
- MuPix mass production: ongoing
- Complete integration run: 2023
- Engineering run: 2024
- First physics run: 2025

Beam commissioning **2022**

2.49e10⁸ mu/s @2.4 mA

OTHER MUON EXPERIMENT

for physics studies in China (YGA bay area)

MESON DECAY EXPERIMENTS

PIONEER EXPERIMENT AT PSI

a stringent test of lepton universality

$$R^{\pi} = \frac{\pi \to e \nu(\gamma)}{\pi \to \mu \nu(\gamma)}$$

$$= (1.23534 \pm 0.00015) \times 10^{-4} (\pm 0.012\%)$$
 (SN $= (1.2327 \pm 0.0023) \times 10^{-4} (\pm 0.187\%)$ (ex

Goals:

- measure R^{μ} to 0.01% relative precision (Phase I)
- measure BR($\pi^+ \rightarrow \pi^0 e^+ \nu$) to 0.2 % (Phase II)
- measure BR($\pi^+ \rightarrow \pi^0 e^+ \nu$) to 0.06% (Phase III)

Needs high intensity π^+ beam (Phase 1: 3 × 10⁵ s⁻¹, Phases II/III: 2 × 10⁷ s⁻¹)

Phase I approved to run at PSI (Proposal: https://arxiv.org/abs/2203.01981)

۹) (p.) ase I)) III)

PIONEER ESSENTIALS

high precision calorimeter

liquid xenon

NA62 SEARCH FOR LEPTON FLAVOUR VIOLATION

Decay mode	Previous UL on BR (90% CL)	NA62 UL on BR (90% CL)
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	8.6 x 10 ⁻¹¹	4.2 x 10 ⁻¹¹
$K^+ \rightarrow \pi^- e^+ e^+$	6.4 x 10 ⁻¹⁰	5.3 x 10 ⁻¹¹
$K^+ \rightarrow \pi^- \mu^+ e^+$	5.0 x 10 ⁻¹⁰	4.2 x 10 ⁻¹¹
$K^+ \rightarrow \pi^+ \mu^- e^+$	5.2 x 10 ⁻¹⁰	6.6 x 10 ⁻¹¹
$\pi^0 \rightarrow \mu^- e^+$	3.4 x 10 ⁻⁹	3.2 x 10 ⁻¹⁰
$K^+ \rightarrow \pi^- \pi^0 e^+ e^+$	_	8.5 x 10 ⁻¹⁰
$K^+ \rightarrow \mu^- \nu e^+ e^+$	2.1 x 10 ⁻⁸	8.1 x 10 ⁻¹¹

improvement

Factor of 2 (partial dataset)

Factor of 12

Factor of 12

Factor of 8

Factor of 13

First search

Factor of 250

ECN3 hall at CERN

CONCLUSION

- > A significant progress (discoveries!) is foreseen in the coming decade.
 - All muon CLFV experiments are scheduled to take data.
 - Essential to search all muon CLFV processes for identification of new physics.
 - The MEG experiment takes the lead by starting physics run this week.
- Upgrades of muon production facilities (HIMB@PSI, PIP-II@FNAL) will keep the momentum going further into the future.
 - Higher-sensitivity experiments to measure angular distributions of $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$, and <u>atom-dependence</u> of $\mu N \rightarrow eN$ are indispensable to untangle new physics after discovery.
- Highly sensitive CLF studies are planned for pion and kaon decays.

