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Introduction
• Software is used ever increasingly in high-energy physics during every 

step of the data processing chain
• From detector control, through trigger, to reconstruction and analysis

• The code base is enormous

• ~50M lines of C++

• Also large (but size) unknown python code base
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Characteristics and Challenges
• Characteristics of HEP experiments over the next decade

• Increasingly sophisticated detectors, increased event data volume

• Higher data rates

• Increasing demands in physics precision

• Need to explore unconventional signatures

• Challenges/Opportunities
• Technology evolution

• Increased concurrency 

• Increasingly diverse architectures

• Machine learning

• Data science, including python for scientific computing

• Open Source Software

• Funding constraints
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detector or muon spectrometer; and disappearing, appearing, and
kinked tracks.
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so where do we start?

24 April 2017Heather Russell, McGill University
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Figure 1.2: Schematic of the variety of challenging, atypical experi-
mental signatures that can result from BSM LLPs in the detectors at
the LHC. Shown is a cross-sectional plane in azimuthal angle, f, of
a general purpose detector such as ATLAS or CMS. From Ref. [3].

Because the long-lived particles of the SM have masses . 5 GeV
and have well-understood experimental signatures, the unusual sig-
natures of BSM LLPs offer excellent prospects for the discovery of
new physics at particle colliders. At the same time, standard recon-
struction algorithms may reject events or objects containing LLPs
precisely because of their unusual nature, and dedicated searches
are needed to uncover LLP signals. These atypical signatures can
also resemble noise, pile-up, or mis-reconstructed objects in the de-
tector; due to the rarity of such mis-reconstructions, Monte Carlo
(MC) simulations may not accurately model backgrounds for LLP
searches, and dedicated methods are needed to do so.

Although small compared to the large number of searches for
prompt decays of new particles, many searches for LLPs at the
ATLAS, CMS, and LHCb experiments at the Large Hadron Col-
lider (LHC) have already been performed; we refer the reader to
Chapter 3 for descriptions of and references to these searches. Ex-
isting LLP searches have necessitated the development of novel
methods for identifying signals of LLPs, and measuring and sup-
pressing the relevant backgrounds. Indeed, in several scenarios
searches for LLPs have sensitivities that greatly exceed the search
for similar, promptly decaying new particles (as is true, for ex-
ample, for directly produced staus in supersymmetry [4]). The
excellent sensitivity of these searches, together with the lack of a
definitive signal in any prompt channels at the LHC, have focused
attention on other types of LLP signatures that are not currently
covered. These include low-mass LLPs that do not pass trigger or
selection thresholds of current searches, high multiplicities of LLPs

M. Schott

H. Russell

https://indico.cern.ch/event/607314/contributions/2542309/attachments/1447873/2231444/20170424_LLPs.pdf


HEP Event Rates and Sizes
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A. Cerri

Trigger rate increases by more 
than an order of 
magnitude for ALICE and 
LHCb for Run 3

Trigger rate increase by an 
order of magnitude for 
ATLAS and CMS for Run 
4 

Even larger event sizes for 
DUNE but lower rate

Not shown, potential LHCb and 
ALICE upgrades



Looking ahead to Run 4 (HL-LHC)
• For ATLAS and CMS we expect

• 5-7x increase in luminosity (LHC upgrade)

• 4-5x increase in event size (new detectors)

• 10x increase in event rate (trigger upgrade)

• However, flat computing budgets mean that new techniques 
and new ideas are required
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Similar results for disk and tape

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults


Project Management towards Run 4
• ATLAS and CMS have undergone an extensive 

planning process to identify the software 
development needs towards HL-LHC

• ATLAS HL-LHC Conceptual Design Report 
(2020)

• Evolution of the CMS Computing Model towards 
Phase-2 (2021)

• November LHCC Review 

• ATLAS Software and Computing HL-LHC 
Roadmap

• CMS Phase-2 Computing Model: Update 
Document

• ATLAS and CMS have defined a set of projects and 
milestones that are tracked and reviewed 
regularly 
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CMS Phase-2 Computing Model: Update
Document

CMS Offline Software and Computing

Abstract

The Phase-2 upgrade of CMS, coupled with the projected performance of the HL-LHC, shows great
promise in terms of discovery potential. However, the increased granularity of the CMS detector
and the higher complexity of the collision events generated by the accelerator pose challenges in the
areas of data acquisition, processing, simulation, and analysis. These challenges cannot be solved
solely by increments in the computing resources available to CMS, but must be accompanied by
major improvements of the computing model and computing software tools, as well as data processing
software and common software tools. In this document we present aspects of our roadmap for those
improvements, focusing on the plans to reduce storage and CPU needs as well as take advantage of
heterogeneous platforms, such as the ones equipped with GPUs, and High Performance Computing
Centers. We describe the most prominent research and development activities being carried out in
the experiment, demonstrating their potential effectiveness in either mitigating risks or quantitatively
reducing computing resource needs on the road to the HL-LHC.

N.B. This document is based on the written response of the CMS experiment to the charge of the

LHCC Computing Model Review round in November 2021 and has been minimally edited for content

and presentation.

https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf
https://cds.cern.ch/record/2751565?ln=en
https://cds.cern.ch/record/2751565?ln=en
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://cds.cern.ch/record/2815292?ln=en
https://cds.cern.ch/record/2815292?ln=en


Code Optimization/Software 
Modernization
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Code Optimization and Modernization
• Optimization and modernization 

bring significant CPU gains

• vectorization, multi-threading, 
memory architecture and 
allocation

• CMS continues to use 
multithreaded applications 
extensively in reconstruction

• Multicore generation, simulation, 
digitization/pile up mixing, 
reconstruction, creation of analysis 
formats (8 threaded jobs on the 
GRID) 

• ALICE can perform simulation with 
parallel processing of sub-events
• Exploit opportunistic HPC 

resources
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~4x
LHCb
Tracking

• Through optimization the ATLAS 
Geant4 code has been sped up by 
30%



Tracking Modernization
• Complete revamp for CMS tracking for Run 3

• New CMS tracking (mkFit) reduced time needed for tracking by 
20% and the full reconstruction by 10%

• ACTS is an experiment-independent toolkit for track reconstruction in 
implemented in modern C++

• Components of ACTS will be used by ATLAS for Run 3, but full 
integration targets Run 4
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reconstructed track, and the numerator includes all simulated tracks that are matched to multiple
reconstructed tracks. The duplicate rate is worse for higher values of ⌘ due to the larger number of
overlapping detector modules leading to multiple track seeds for a single charged particle. The two
duplicate removal steps outlined in Sec. 4.6 reduce the overall duplicate rate in ��F�� from over
30% to less than 1%.

The fake rate is defined as the fraction of reconstructed tracks that are not matched to a simulated
track. The fake rate of the ��F�� algorithm is shown in Figure 5 (right) as a function of ⌘ for tracks
with pT > 0.9 GeV; the performance of ��F�� and CMSSW in terms of fake rate is similar, with
��F�� 3.5% higher in overall absolute terms. Note that the results shown in Figure 5 include all
tracks produced by the track building step; the fake rate is further reduced for both ��F�� and
CMSSW tracks by additional track selections that are applied after the final fit in CMSSW.

It is also important to ensure that the tracks reconstructed by ��F�� are similar in quality as the
tracks reconstructed by CMSSW, e.g., by verifying that the algorithm collects the majority of hits
along the track. Figure 6 shows the number of layers with found hits in tracks that are reconstructed
by ��F�� and CMSSW; the overall average number of layers is 15.1 for CMSSW and 14.9 for
��F��.

In summary, while not identical, the ��F�� results in terms of the metrics presented here are
su�ciently close to those of the nominal CMSSW algorithm so that, for the purpose of the present
demonstration, the two algorithms can be considered equivalent from the physics performance point
of view.

Figure 4. E�ciency of the ��F�� (red) and nominal CMSSW (blue) track building algorithms as a function
of the track ⌘ (left) and pT (right). The e�ciency with respect to track ⌘ is calculated for tracks with
pT > 0.9 GeV. The e�ciency is defined as the fraction of simulated tracks that are matched to at least one
reconstructed track; only simulated tracks matched to a seed are considered. Sample used: first CMS o�ine
tracking iteration for tt̄ events with <PU>=50 and CMSSW version 10_4_0_patch1.

5.4 Computing Results

This section outlines the computational performance of ��F��, measured primarily with a set of
benchmarks that test the scaling behavior of ��F�� as a function of increased resources. We first
measure the vectorization and multithreading performance solely of the track building subroutine
within ��F��, ignoring the time for I/O, seed preparation, hit organization, etc. In both tests, we
process a total of 100 events and sum the build times for all but the first event. In these tests,

– 14 –

Figure 10. Comparison of the single-thread time to run ��F�� as an external within the CMSSW framework
(red) to the time to run the standard first iteration of o�ine tracking in CMSSW (blue). Note that ��F��
is used as a replacement for the building step only. ��F�� achieves a speedup >6x over CMSSW in the
track building stage. Time measured on SKL-SP using tt̄ events with <PU>=50 and CMSSW version
10_4_0_patch1.

6 Conclusions and Outlook

The KF-based track building algorithm is the main driver in CPU time increase at the LHC with
increasing instantaneous luminosity. We successfully re-engineered the KF-based track building
algorithm for parallel processing: about 70% of the core algorithm is e�ectively vectorized (speedup
close to 3x), and multithreading achieves speedups exceeding the number of available physical
cores with scaling close to the multiprocessing limit. The physics performance of the re-designed
algorithm is comparable to state-of-the-art algorithms, with further fine-tuning still possible. Tests
within the CMS reconstruction framework show that ��F�� is faster than the default algorithm on
the o�ine first tracking iteration, and that track building is now faster than track fitting. These results
demonstrate that ��F�� is a viable solution to the timing problem of charged particle tracking at the
LHC. Work is underway towards a full integration in the CMS experiment, including application
to multiple tracking iterations and integration in the HLT configuration, and, in the longer term,
towards a GPU-friendly implementation.

– 19 –

20 Xiaocong Ai et al.

Fig. 15: The pull distributions of the six bound track parameters, d0, z0, �, ✓,
q
p , and t, as obtained with the KF

on the TrackML detector. The blue dots are the obtained pull values and the orange lines are the fitted Gaussian
curves. For each Gaussian fit, the fitted values (with negligible uncertainties) for the parameters mean (µ) and
standard deviation (�) are shown in the legend. Truth-generated seeds are used for the KF. A sample of 100,000
single muons with 500 MeV< pT < 10 GeVand at least nine measurements on the detector is used.

4.3.3 Primary Vertex Reconstruction E�ciency

Figure 16 shows the number of reconstructed primary
vertices as a function of

⌦
µ
↵
of the tt̄ sample using the

ACTS AMVF based on the truth tracks. The AMVF
e�ciency is optimized for a mid-range working point
of expected pile-up conditions for the upcoming data-
taking run of the LHC, Run-3. These have

⌦
µ
↵
⇡ 60 but

the performance extrapolates well to higher numbers of
simultaneous pp interactions. When used by an experi-
ment, the AMVF configuration would be optimized for
the small pile-up range targeting the experiment’s needs
and accelerator conditions.

4.4 CPU Performance

The CPU performance, including the CPU utilization
and time performance, was tested on a Haswell node
at the National Energy Research Scientific Computing
Center (NERSC) [69] (Cori-Haswell). The node has 32
physical cores and 64 threads at a clock rate of 2.3 GHz.

Fig. 16: Number of reconstructed primary vertices with
the ACTS AMVF for di↵erent numbers of true pp col-
lisions in simulated tt̄ events. For reference, the gray
dashed line indicates a 100% vertex reconstruction e�-
ciency and the blue dots indicate the vertex reconstruc-
tion e�ciency given a detector acceptance of |⌘| < 2.5
and pT > 400 MeV

Ai et al, 
arXiv:2106.13593

ATLAS
Tracking

~9x

https://arxiv.org/abs/2006.00071
https://acts.readthedocs.io/en/latest/
https://arxiv.org/abs/2106.13593
https://arxiv.org/abs/2106.13593


Generator Optimization
• Example: Optimization of Sherpa brings approximately order of 

magnitude improvement for V+jets for ATLAS

• LHAPDF optimization (~5x), weight optimization (~5x)
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Christian Gütschow
Further Sherpa and LHAPDF improvements
Impact on overall run time in V+jets

‹ study the impact of
improvements sequentially:

‹ improved efficiency
in LHAPDF
(6.2.3 ! 6.4.0)

‹ disable subleading
colour corrections
in MC@NLO 1-step
parton shower
(PSMODE 0 ! 1)

‹ introduce pilot run
in Sherpa
(2.2.11 ! 2.2.12)

‹ defer (LC) 1-step
shower until after
the unweighting
(PSMODE 1 ! 2)

‹ use analytic one-loop
amplitudes in pilot run
(OL ! MCFM)

101 102 103

e�ective run time for 5000 events [CPU h]

pilot run, �LC�-MC@NLO-CSS, Mcfm/OpenLoops, Lhapdf 6.4.0
pilot run, �LC�-MC@NLO-CSS, OpenLoops, Lhapdf 6.4.0

pilot run, �LC�-MC@NLO, OpenLoops, Lhapdf 6.4.0
�LC�-MC@NLO, OpenLoops, Lhapdf 6.4.0

S-MC@NLO, OpenLoops, Lhapdf 6.4.0
S-MC@NLO, OpenLoops, Lhapdf 6.2.3

pilot run, �LC�-MC@NLO-CSS, Mcfm/OpenLoops, Lhapdf 6.4.0
pilot run, �LC�-MC@NLO-CSS, OpenLoops, Lhapdf 6.4.0

pilot run, �LC�-MC@NLO, OpenLoops, Lhapdf 6.4.0
�LC�-MC@NLO, OpenLoops, Lhapdf 6.4.0

S-MC@NLO, OpenLoops, Lhapdf 6.4.0
S-MC@NLO, OpenLoops, Lhapdf 6.2.3

pilot run, �LC�-MC@NLO-CSS, Mcfm/OpenLoops, Lhapdf 6.4.0
pilot run, �LC�-MC@NLO-CSS, OpenLoops, Lhapdf 6.4.0

pilot run, �LC�-MC@NLO, OpenLoops, Lhapdf 6.4.0
�LC�-MC@NLO, OpenLoops, Lhapdf 6.4.0

S-MC@NLO, OpenLoops, Lhapdf 6.4.0
S-MC@NLO, OpenLoops, Lhapdf 6.2.3

pilot run, �LC�-MC@NLO-CSS, Mcfm/OpenLoops, Lhapdf 6.4.0
pilot run, �LC�-MC@NLO-CSS, OpenLoops, Lhapdf 6.4.0

pilot run, �LC�-MC@NLO, OpenLoops, Lhapdf 6.4.0
�LC�-MC@NLO, OpenLoops, Lhapdf 6.4.0

S-MC@NLO, OpenLoops, Lhapdf 6.4.0
S-MC@NLO, OpenLoops, Lhapdf 6.2.3

pilot run, �LC�-MC@NLO-CSS, Mcfm/OpenLoops, Lhapdf 6.4.0
pilot run, �LC�-MC@NLO-CSS, OpenLoops, Lhapdf 6.4.0

pilot run, �LC�-MC@NLO, OpenLoops, Lhapdf 6.4.0
�LC�-MC@NLO, OpenLoops, Lhapdf 6.4.0

S-MC@NLO, OpenLoops, Lhapdf 6.4.0
S-MC@NLO, OpenLoops, Lhapdf 6.2.3

Sherpa MEPS@NLO

pp � e+e�+0,1,2j@NLO+3,4,5j@LO

EWvirt+scales+PDF1000

EWvirt+scales+PDF100

EWvirt+scales

EWvirt

no variations

HSF Generator WG Meeting #19, 7 April 2022 enrico.bothmann@uni-goettingen.de 9/12

E. Bothmann et al

https://indico.cern.ch/event/1142647/contributions/4806793/attachments/2423284/4148564/HSF_Generator_WG_Meeting_19_2022_Bothmann.pdf


Analysis Models
• Many competing factors keep 

analysis models fluid

• Flexibility and ease of analysis vs 
computing needs

• Tiny formats for specific analyses vs 
shared formats for multiple analyses

• Framework readable vs laptop 
readable

• High-level physics analysis objects vs 
novel techniques

• Stability and consistency (e.g. 
reanalyse old datasets)

• Analysis precision vs disk space 
(including detailed systematics)

• Lossy compression
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Recent improvements to analysis models
• Centralized analysis production

• e.g. analysis trains (D0/ATLAS/ALICE) or DIRAC (LHCb) transformation 
system

• LHCb has centralized skimming and trimming (sprucing)

• CMS a NanoAOD (1-2 kB/event) for ~50% of analyses

• ALICE has a highly optimized AOD format based on tables

• Declarative analysis

• Complexity hidden from users

• ATLAS is introducing DAOD_PHYS and DAOD_PHYSLITE (10 kB/event)
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CMS Offline Computing 
Results

https://twiki.cern.ch/twiki/pub/CMSPublic/CMSOfflineComputingResults/NanoAOD_Adoption_2017_2021.png
https://twiki.cern.ch/twiki/pub/CMSPublic/CMSOfflineComputingResults/NanoAOD_Adoption_2017_2021.png


Common Software
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Common Software R&D Institutes
• HEP experiments at the LHC and beyond face similar changes

• Formation of the HEP Software Foundation (HSF) in 2015

• Provides a common forum for software for HEP experiments

• Funded R&D efforts in common software in a number of countries

• Examples are listed on the next page

• Activity encouraged by the European Strategy

• “[…] vigorously pursue common, coordinated R&D efforts […], to 
develop software […] that exploit the recent advances in information 
technology and data science […]”

• Common projects can aid software maintainability

• More likely to have a pool of people available for maintenance

14

http://hepsoftwarefoundation.org/


Examples of Software Institutes
15

• IRIS-HEP, NSF, 2018

• Analysis systems, innovative 
algorithms, DOMA, training

• ErUM-DATA, Helmholtz Institute, 
Germany

• Heterogeneous computing and 
virtualized environments, 
machine learning for 
reconstruction and simulation 

• EP R&D, CERN, Switzerland, 2020

• Turnkey software systems, faster 
simulation, track and calo 
reconstruction, efficient analysis 

• HEP-CCE, DOE, USA, 2019

• Portable Parallelization 
Strategies, I/O Strategy on HPC, 
Event generators 

• AIDAInnova, European 
Commission EU, 2021 

• Turnkey software, track 
reconstruction, particle flow, ML 
simulation 

• SWIFT-HEP STFC, 2021 and 
ExCALIBUR-HEP, 2020, UKRI UK

• Exascale data management, 
Event generators, detector 
simulation on GPUs, FPGA 
tracking for HLT 

Slide Credit: G. Stewart

https://iris-hep.org/
https://www.erum-data-idt.de/
https://ep-rnd.web.cern.ch/topic/software
https://www.anl.gov/hep-cce
https://aidainnova.web.cern.ch/
http://swift.hep.ac.uk/
https://excalibur.ac.uk/projects/excalibur-hep/


Implementation of ACTS into sPHENIX Track Reconstruction 5

sPHENIX Object sPHENIX-ACTS Module ACTS Tool

ACTS info

Update

Call tool

ACTS result

Fig. 4 A flow chart demonstrating the sPHENIX-ACTS implementation. Objects within the sPHENIX framework carry raw
measurement information, such as the two-dimensional local position of the measured cluster. An sPHENIX-ACTS module
serves as a wrapper that interfaces with the ACTS tool, converting and updating the relevant sPHENIX object.

Fig. 5 The workflow for track reconstruction in sPHENIX is
shown. The workflow flows from top to bottom, starting with
clustering in each subsystem and finishing with reconstructed
tracks and vertices.
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Fig. 6 The ACTS seeding e�ciency as implemented in the
sPHENIX MVTX. The e�ciency is defined in the text.

the e�ciency of the cellular automaton seeding algo-
rithm, where the e�ciency is defined as the fraction
of truth tracks for which there is at least one recon-
structed seed within the azimuthal and pseudorapidity
ranges �� < 0.02 rad and �⌘ < 0.006, respectively.

These seeds are then connected to the silicon track
seeds with azimuthal and pseudorapidity matching cri-
teria. If more than one silicon seed is found to match
a TPC seed, the TPC seed is duplicated and a com-
bined full track seed is made for every matched silicon
seed. These assembled tracks are provided to the ACTS
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Fig. 7 The e�ciency of the cellular automaton seeding algo-
rithm as implemented in the sPHENIX TPC. The e�ciency
is defined in the text.

Kalman Filter track fitting tool. The ACTS fitter takes
the full track seed, the estimated track parameters from
the seed, and an initial vertex estimate to fit the tracks.
Examples of the current track fitting performance are
shown in Fig. 8 in simulated events where 100 pions
are thrown in the nominal sPHENIX acceptance. The
left panel shows the pT resolution, while the right panel
shows the ⌥ (1S) invariant mass resolution. Both meet
the requirements listed in Section 2 in these low mul-
tiplicity events. We have found that there is not a sig-
nificant degradation in physics performance compared
to previous sPHENIX track reconstruction implemen-
tations. Evaluation of the track reconstruction software
in central HIJING [12] events with 50 kHz pileup is on-
going. These events represent the highest occupancies
that sPHENIX will experience.

3.3 Track Reconstruction Timing

Another important computational performance test of
the ACTS track fitting package is the time spent per
track fit. The nominal computational speed goal is to
be able to run the track reconstruction in an average of
5 seconds or less per minimum bias event on the BNL

Software for Multiple Experiments
• Common packages have been used extensively by 

many experiments over many years including CLHEP, 
ROOT, Geant4, GAUDI

• For Run-3,  ALICE uses ALFA, framework developed 
with GSI (FAIR) as common integration platform for 
online/offline processing

• Online reconstruction using heterogeneous farm

• Enables parallel data processing

• DD4HEP is now used by CMS, LHCb among other 
experiments for the detector description

• ACTS has origins in ATLAS tracking software, but 
currently being explored by different experiments

• LHCb is splitting of Gaussino as experiment-
independent part of Gauss simulation framework (w. 
CERN SFT/FCC)
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Figure 3. CMS detector model for 2021 built with DD4hep

6 Migration Challenges

The migration presented many challenges. In the evaluation phase, CMS developed a com-
prehensive requirements document that was discussed with the DD4hep and ROOT develop-
ment teams to identify missing features and capabilities. One conclusion of these discussions
was that DD4hep lacked several key features required by CMS. First, CMS required support
for three special shapes: two versions of truncated tubes and a trapezoid combined with a
cylinder. Second, CMSSW required support for Geant4 [5] version 10.4. Third, support for
two di↵erent unit conventions was needed: the Geant4 convention where a millimeter equals
1, and the ROOT convention where a centimeter equals 1. Fourth, the ROOT "TGeo" geom-
etry classes used by DD4hep were not thread-safe. Fifth, CMS uses left-handed coordinate
systems for representing sub-detectors that have two mirror-image sides, but DD4hep did not
support left-handed coordinate systems. Sixth, CMSSW needs to build both dynamic and
static versions of DD4hep libraries, but DD4hep could not be built as a static library.

The solutions in all these cases were that DD4hep was enhanced to support the features
needed by CMS. The DD4hep developers made several of the enhancements, but in some
cases, the issue lay in the underlying ROOT architecture, and in these cases the DD4hep and
ROOT development teams worked together to implement the enhancements. The result was
that both DD4hep and ROOT were improved.

Further challenges were overcome by CMS developers. CMS uses DD4hep as a mediator
between its DD primitives stored in XML files and the simulation and reconstruction appli-
cations. CMS needed to develop a thin layer to handle communication between DD4hep
and CMSSW. CMS required a hierarchical querying and filtering mechanism for navigating
through detector volumes based upon special parameters defined in the XML files, and this
code had to be developed as an extension to the basic DD4hep detector representation. Ad-
ditionally, CMS code was needed to define geometric volumes that act as sensitive detectors
and to set CMS-specific restricted values used in simulating particle interactions with mate-
rials. The old CMS DD allowed reference to undefined geometric objects in XML files as
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Python for Analysis

• Ongoing boom in the field of data 
science

• Python has become the language of 
choice for data science applications

• Huge community has developed well-
documented tools

• numpy, matplotlib, pytorch, 
tensorflow, etc

• Balanced against our own designed-to-
purpose and customized tools, in 
particular, ROOT

• Python is becoming increasing 
popular for analysis especially amongst 
the younger members of our 
community
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Analysis Ecosystem (singular!)

• Python is widely viewed as the Analysis Language going forward  
• just started 5 years ago, but now lots of progress (Scikit-HEP, PyHEP, much 

improved “import ROOT”, …) 
• existence proofs of “end-to-end” analyses that use Scikit-HEP tools 

(good to show completeness, but not an end-goal in itself) 
• Other languages interesting (Julia) but not expected to break through (yet?)

[J. Pivarski]

• Moving beyond “X vs ROOT” - should aim for a single, interoperable ecosystem 
of analysis tools. Analyzers should be able to mix & match freely  

• Example: RDF <> Awkward-Array bridge, Stat. Workspace JSON, …

Analysis Ecosystem (singular!)

• Moving beyond “X vs ROOT” - should aim for a single, interoperable ecosystem 
of analysis tools. Analyzers should be able to mix & match freely  

• Example: RDF <> Awkward-Array bridge, Stat. Workspace JSON, …

Analysis Ecosystem (singular!)

J. Pivarski
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Hardware Evolution
• Transistor density still increasing 

according to Moore’s Law

• since ~2006 increase due to more cores 
rather than increased chip clock speed

• Increasingly diverse set of computer 
architectures, e.g.

• Graphical Processing Units (GPUs)

• Field Programmable Gate Arrays (FPGAs)

• Tensor Processing Units (TPUs)

• Require parallel programming 

• Extensive set of R&D projects
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Image Source

• GPUs and FPGAs can be used either to run a full standalone application 
or to offload specific applications

• GPU or FPGA clusters as a service for deep learning training or 
inference has been explored by a number of groups

• Krupa et al, Duarte et al, Rankin et al, Wang et al 

https://github.com/karlrupp/microprocessor-trend-data
https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/
https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/1904.08986
https://arxiv.org/abs/2010.08556
https://arxiv.org/abs/2009.04509


Trigger Applications
• LHCb’s HLT1 is a fully software 

trigger that performs partial event 
reconstruction, in particular tracking, with 
the Allen framework* using GPUs

• Processes events at 30 MHz on <500 
GPUs with improved physics 
performance

• 40 Tbit/s ➡1-2 Tbits/s 

• NA62 uses GPUs in their trigger relying 
on an FPGA-based interface card to 
directly transfer data between CPU and 
GPU (NaNeT)

• CMS has offloaded 30% of HLT 
sequence to GPUs (NVidia T4)

• Ongoing work to offload offline 
reconstruction to GPUs

20

6

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032022  doi :10.1088/1742-6596/1085/3/032022

Figure 5: GPU processing latency.

Figure 6: Ring reconstruction latency: NVIDIA Pascal (P100) vs K20c.

5. Conclusions
The widespread availability of heterogeneous architectures led us to assess their potential in
the challenging real-time environment of low level trigger systems for High Energy Physics
experiments. The whole NaNet-based framework turns out to be able to cope with the strict
requirements for the NA62 RICH Low Level Trigger with respect to events rate and time budget.

The hurdle of the latency in the ring reconstruction might be overcome, according to our
tests, with a GPU upgrade. We plan to install the new NVIDIA P100 in order to keep the
process latency below the threshold without any downscaling factor and to prove the ability of
the NaNet-based system to sustain the full detector throughput.
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Figure 6. Comparison of the pixel tracks reconstruction e�ciency of the CPU and GPU versions
of the Patatrack Pixel reconstruction for simulated tt̄ events with an average of 50 superimposed
pileup collisions.
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Figure 7. Pixel tracks reconstruction e�ciency for simulated tt̄ events with an average of 50
superimposed pileup collisions. The performance of the Patatrack reconstruction when producing
Pixel Tracks starting from n-tuplets with nhits � 3 and nhits � 4 are represented respectively by
blue squares and red circles. The performance of CMS-2018 is represented by black triangles.
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throughput in events/s
Configuration Triplets CPU Triplets GPU Quadruplets CPU Quadruplets GPU CMS 2018
no copy 611 870 892 1386 476
copy, no conv. — 867 — 1372 —
conversion 585 861 855 1352 —

Table 4. Throughput of the Patatrack triplets and quadruplets workflows when executed on GPU
and CPU, compared to the CMS-2018 reconstruction. The benchmark is configured to reconstruct
64 events in parallel. Three di↵erent configurations have been compared: in no copy the result is
not copied from the memory of the device where it was initially produced; in copy, no conv. the
SoA containing result produced on the GPU is copied to the host memory; in conversion the SoA
containing the result is copied to the host memory (if needed) and then converted to the legacy
data format used for the pixel tracks and vertices by the CMS reconstruction.

Skylake node when running the Patatrack pixel quadruplets reconstruction. Producing

even better physics performance by producing also pixel tracks from triplets has the e↵ect

of almost halving the throughput. Copying the results from the GPU memory to the host

memory has a small impact to the throughput, thanks to the possibility of hiding latency

by overlapping the execution of kernels with copies. Converting the SoA results to the

legacy data format has a small impact on the throughput as well, but comes with a hidden

cost: the conversion takes almost 100% of the machine’s processing power. This can be

avoided by migrating all the consumers to the SoA data format.

5 Conclusions and future work

The future runs of the Large Hadron Collider (LHC) at CERN will pose significant challenges

on the event reconstruction software, due to the increase in both event rate and complexity.

For track reconstruction algorithms, the number of combinations that have to be tested

does not scale linearly with the number of simultaneous proton collisions.

The work described in this article presents innovative ways to solve the problem of

tracking in a pixel detector such as the CMS one, by making use of heterogeneous computing

systems in a data taking production-like environment, while being integrated in the CMS

experimental software framework CMSSW. The assessment of the Patatrack reconstruction

physics and timing performance demonstrated that it can improve physics performance while

being significantly faster than the existing implementation. The possibility to configure the

Patatrack reconstruction workflow to run on CPU or to transfer and convert results to use

the CMS data format allows to run and validate the workflow on conventional machines,

without any dedicated resources.

This work is setting the foundations for the development of heterogeneous algorithms in

HEP both from the algorithmic and from the framework scheduling points of view. Other

parts of the reconstruction, e.g. calorimeters or Particle Flow, will be able to benefit from

an algorithmic and data structure redesign to be able to run e�ciently on GPUs.

The ability to run on other accelerators with a performance portable code is also being

explored, to ease maintainability and test-ability of a single source.
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clusterization. The calibration requires tracking for the other detectors as well, but only for a small fraction
of events in the order of 1%. Therefore, the dominant part of synchronous processing is the TPC tracking.
ALICE will employ GPUs to speed up the TPC processing as it did during Run 1 and Run 2 in the HLT [8].
The TPC processing time on the GPU defines the number of GPUs required in the EPN farm, and thus the
size of the farm itself.

While TPC tracking is also a significant fraction of the asynchronous reconstruction, it is not so dominant.
First, the synchronous reconstruction already removed a significant fraction of the hits, which in turn speeds
up the asynchronous reconstruction. Second, several tracking steps like the following of looping tracks are
not needed in the asynchronous reconstruction. And last, all other detectors have to process all events
in the asynchronous reconstruction compared to O(1%) in the synchronous. This makes for instance ITS
tracking also computationally intensive. Without using the GPUs in additional steps of the asynchronous
reconstruction, they would be idling most of time time, considering that synchronous data taking of Pb–Pb
events happens only during a few weeks in a year. ALICE is therefore aiming to use the GPUs also in many
places during the asynchronous reconstruction, and a promising case is the full tracking chain of the central
barrel region.

TPC Track 
Finding

TPC Track 
Merging

ITS Track 
Finding

ITS 
Track Fit

TPC ITS 
Matching

TPC 
dE/dx

ITS 
Afterburner

TRD 
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Vertexing
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Global 
Fit

V0 
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TPC Track Model 
Compression

TPC Entropy 
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TPC 
Track Fit

TPC Cluster 
removalTPC <10MeV/c

identification

Sorting Material Lookup Memory ReuseGPU API FrameworkCommon GPU 
Components:

TPC 
Calibration

GPU barrel tracking chain
part of baseline

scenario
part of optimistic

scenario

TPC Cluster 
Finding

TPC Distortion Correction

In operation
Nearly ready
Being studied
Development not started

Figure 1: Overview of the compute-intense reconstruction steps of the global barrel tracking chain and their
state of GPU usage.

Figure 1 gives an overview of all barrel tracking steps that are promising candidates for the GPU in the
long run. The baseline scenario is what is needed during the synchronous reconstruction to keep up with
50 kHz Pb–Pb data, and the required processing steps have been almost fully implemented on the GPU.
Some consolidation and testing will be needed. Afterwards the focus will shift on the optimistic scenario to
eventually port many if not all of these steps onto the GPU for the asynchronous reconstruction.

7.1 Processing large time frames

Several HEP experiments recording mostly pp events are struggling to utilize GPUs to the full extent since
single collisions do not exhibit su�cient parallelism. General approaches are to combine many events into
chunks and process them on the GPU in one go. While a heavy ion collision could fully load a GPU at
the time of LHC Run 1, this is no longer the case today for modern GPUs with many more compute units.
However, the time frames recorded by ALICE in Run 3 contain hundreds of such collisions, which will be
su�cient parallelism also for future GPUs. Instead, the memory becomes the limitation since the full time
frame and all temporary memory for its processing must fit inside the GPU. Therefore, memory usage is
being optimized as much as possible. Processing of triggered events can happen on the GPU independenly,
which enables the reusage of GPU memory used for one collision as soon as it is finished. In the ALICE
case, the full time frame with hundreds of collisions is processed at once and must not be split. Therefore,
the memory is not reused for independent collisions but for consecutive reconstruction steps. More details
are given in [10]. Overall, this poses a limit on the time frame size, and ALICE is currently working with a
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• Early studies from ALICE exploring 
GPUs
• Used for TPC tracking since 2012

• Run-3 also use for additional 
tracking detectors

• CMS pixel tracking and vertexing 
algorithms running on CPU and GPU 
(Patatrack)

• Superior technical performance, and 
equal or better physics performance

• traccc project (connected to ACTS) 
developing end-to-end track 
reconstruction on GPUs

• LHCb RETINA project on FPGAs, aims 
for track reconstruction, currently vertex 
clustering 

https://arxiv.org/pdf/2008.13461.pdf
https://arxiv.org/pdf/2006.04158.pdf
https://indico.cern.ch/event/1103637/contributions/4821828/attachments/2453461/4204592/220531_Connecting_the_dots.pdf


Simulation
• G4 plugins for EM transport on GPUs:  

AdePT
• Very early performance studies

• G4 CPU 1 (24) threads : 497 (43) s

• AdePT GPU: 115 s

• Celeritas also aims to offload EM 
physics

• Reproduces Geant4

• Large performance gains

• A number of groups currently 
exploring Opticks
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Figure 4: Performance of Celeritas on CPU and GPU with single-core Geant4 performance
for reference.

track IDs (used for “MC truth” debugging analysis) are arbitrary.

• As with all other GPU applications, good performance requires saturating the GPU
with work to do, hiding latency for memory accesses and amortizing the launch cost and
CPU overhead. Experimental workflows may need to batch multiple events together
to achieve peak GPU performance.

Taking these considerations together, we extrapolate these initial results to be representative
of expected performance on a fully featured Celeritas EM simulation.

Figure 5 dives into the performance characteristics of the many-threaded GPU execution
by enabling extra diagnostics and detailed timing. As plotted in Fig. 5a, the behavior of
the tracks in flight (blue lines, left axis) and queued secondary initializers (red line, right
axis) determines the maximum thread count in the current implementation, which is limited
by the memory requirements of the initializers: the current peak of 2.5⇥ 107 secondaries
must at present be below a user-selected preallocated secondary capacity. For the first
⇠10 steps the total particle count rises precipitously; but a lower active track count will
tend to complete the transport of low-energy secondaries before starting to transport the
high-energy particles that will increase the total number of tracks in flight. By preferentially
selecting lower-energy particles for tracking, algorithmic improvements could reduce the total
capacity requirement. Additional code improvements should allow the secondary capacity to
reallocate dynamically and even bu↵er secondaries in CPU memory or non-volatile memory
(NVM), maximizing the number of active tracks and taking full advantage of massive GPU
parallelism.

The timing breakdown in Fig. 5b zooms in on time requirements of the steep rise and
slow fall of active tracks. The simulation required seven step iterations to saturate the GPU
with 221 (about two million) active tracks from the 100 000 initial primaries. The increase in
time from the initial step (all tracks encounter a boundary since they are born in a vacuum)
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Figure 3: Comparison between Geant4 and Celeritas simulation runs. Results are in
agreement within the statistical errors.

both CPU and GPU implementations, where each step is divided into numerous kernels with
many synchronization points, many tracks must be “in flight” simultaneously to amortize the
overhead of thread synchronization on CPU. On GPU, one thread corresponds to a single
track, but the CPU can transport an arbitrary number of tracks per physical core. This
problem uses 1024 total tracks regardless of core count on CPU. For the results presented
in Fig. 4, only one CPU socket (up to 16 physical cores) and a single GPU are used. Peak
GPU performance is reached with about a million simultaneous tracks. At this peak, the
GPU was about 30⇥ faster than a 16-core run of the OpenMP version of Celeritas, the
equivalent performance of 170 single-core CPU Celeritas runs or 240 CPUs running Geant4.

These initial results are surprisingly good for an initial unoptimized simulation of a
problem with multiple realistic physics, but they do come with caveats:

• This demonstration version of Celeritas supports only a single element per material,
and the demonstration problem is hardwired to have no magnetic field. Including
those features will slow down the simulation even if they are unused.

• The pseudo-random number generator (PRNG) used in the Celeritas demonstra-
tion (XORWOW) is faster and less statistically random than the PRNG in Geant4
(MixMax).

• The current Celeritas algorithm and data structures are designed for massive GPU
parallelism and are not optimal for CPU parallelism, especially with a small thread
count.

• Aside from early performance analysis on a small subset of the present code base in
[21], no optimization work has been performed for this demonstration, so Celeritas
may become faster.

• The simulation results are reproducible with the same number of threads, but individual
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Togini et al, arXiv:2203.09467

https://geant4.web.cern.ch/node/1903
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Calo Reconstruction
• High-granularity calorimeters: clustering 

becomes a computational challenge

• CMS has developed the highly-
parallelizable CLUE algorithm which 
obtains speed increases of 48-112 (1.2 - 
2.0) on GPUs compared to single (10 
threaded) CPUs

• ATLAS implementation of calorimeter 
signal processing on FPGAs using ML

• Promising results, but requires further 
optimization to improve  resource 
usage and latency
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Rovere at aluniformly over the layers.When clustering with CLUE, the bin size
is set to 5 cm comparable with the width of the clusters, and the
algorithm parameters are set to dc ! 3 cm, δo ! δc ! 5 cm, ρc ! 8.
To test CLUE’s linear scaling, the number of points on each layer is
incremented from 1,000 to 10,000 in 10 equaling steps. A total of
100 layers are input to CLUE simultaneously, which simulates the
proposed CMS HGCAL design (The Phase-2 Upgrade of the CMS
Endcap Calorimeter, 2017). Therefore, the total number of points
in the test ranges from 105 to 106. The linear scaling of execution
time is validated in Figure 5.

The single-threaded version of the CLUE algorithm on CPU
has been implemented in C++, while the one on GPU has been
implemented in C with CUDA (Nvidia Corporation, 2010). The
multi-threaded version of CLUE on CPU uses the Threading
Building Blocks (TBB) library (Reinders, 2007) and has been
implemented using the Abstraction Library for Parallel Kernel
Acceleration (Alpaka) (Zenker et al., 2016). The test of the
execution time is performed on an Intel Xeon Silver 4114
CPU and NVIDIA Tesla V100 GPU connected by PCIe Gen-3
link. The time of each GPU kernel and CUDA API call is
measured using the NVIDIA profiler. The total execution time

is averaged over 200 identical events (10,000 identical events if
GPU). Since CLUE is performed event-by-event and it is not
necessary to repeat memory allocation and release for each event
when running on GPU, we perform a one-time allocation of
enough GPU memory before processing events and a one-time
GPU memory deallocation after finishing all events. Therefore,
the one-time cudaMalloc and cudaFree are not included in the
average execution time. Such exclusion is legit because the
number of events is extremely massive in high-energy physics
experiments and the execution time of the one-time cudaMalloc
and cudaFree reused by each individual event is negligible.

In Figure 5 (upper), the scaling of CLUE is linear, consistent
with the expectation. The execution time on the single-threaded
CPU, multi-threaded CPU with TBB, and GPU increases linearly
with the total number of points. The stacked bars represent the
decomposition of execution time. In the decomposition, unique
to the GPU implementation is the latency of data transfer
between host and device, which is accounted for in the grey
narrower bar, while common to all the three implementations are
the five CLUE steps. Comparing with the single-threaded CPU,
when building spatial index and deciding seeds, shown as red and

FIGURE 5 | (Upper) Execution time of CLUE on the single-threaded CPU, multi-threaded CPU with TBB, and GPU scale linearly with number of input points,
ranging from 105 to 106 in total. Execution time on single-threaded CPU is shown as blue circle dots and on 10 multi-threaded CPU with TBB is shown as blue square
dots, while the time on GPU is shown as green circle dots, scaled up by a factor 50 to fit the same vertical scale. The stacked bars represent the decomposition of
execution time. The gray narrower bars are latency for data traffic and memory management; wider bars represent time of essential CLUE steps (Lower)
Comparing with the single-threaded CPU, the speed-up factors of the GPU range from 48 to 112, while the speed-up factors of the multi-threaded CPU with TBB range
from 1.2 to 2.0, which is less than the number of concurrent threads on CPU because of atomic pushing to the data containers discussed in Section 3. Table 1 shows
the details of the decomposition of the execution time in the case of 104 points per layer.
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Generators
• Generation time becomes significant 

particularly as the event 
complexity increases (e.g. events 
with many jets)

• GPUs are being explored for matrix 
element calculations to improve 
speed, e.g.

• BlockGen

• MadFlow

• MadGraph-GPU

• Recent review, Isaacson, arXiv: 
2202.05991
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Figure 1. Left: Estimated computing requirements for current (open circles), conservative
speedups (closed vertical triangles), and aggressive speedups (closed inverted triangles) as a
function of time. Additionally, estimates of the expected computing budget are given as solid
black lines. The figure is reproduced from Ref. [22]. Right: CPU hours required to generate one
million events as a function of number of final state jets. The calculation of the hard matrix
element is shown in ref, and the calculation of the parton shower is shown in green and blue.
This figure is reproduced from Ref. [23].

matrix element generators that can take advantage of hardware accelerators such as graphics
processing units (GPUs), and will be discussed in Sec. 2. The second is using machine learning
to develop a quick but accurate estimate of the matrix element to reduce the need to perform
the full calculation. Details of this approach can be found in Sec. 3. Thirdly, machine learning
can also be used to more e�ciently sample the phase space integrals involved in simulating
the events for the colliders, which is explained further in Sec. 4. Finally, when going beyond
tree-level descriptions, negative weights are unavoidable. Negative weights drastically decrease
the e↵ective sample size. Methods to reduce the negative weight fraction are reviewed in Sec. 5.

2. GPU Matrix Element Generators
There are three major e↵orts investigating the use of GPUs for matrix element calculations. Each
group takes a di↵erent approach in handling the conversion from CPU codes to GPU codes.
These approaches are the ones developed in BlockGen [24], MadFlow [25], and MadGraph-
GPU [26].

2.1. BlockGen

The BlockGen framework [24] implements the Berends-Giele recursion relation [27, 28] directly
onto GPUs. They performed a comprehensive study comparing color-ordered (BlockGen-CO⌃)
and color-dressed (BlockGen-CDMC) implementations. The authors found that both algorithms
are memory bound and not compute bound on the GPUs. The memory required by each
algorithm can be found in Fig. 2. The large memory footprint prevents all the needed memory
fitting in the local memory, resulting in memory fetching dominating the time per event.
However, significant improvement over traditional CPU implementations was found (see Fig 3).

2.2. MadFlow

The MadFlow framework [25] develops an interface with the MadGraph5 aMC@NLO
program [17] to generate Tensorflow [29] code. Since Tensorflow implements GPU calculations,

S. Hoeche et al, arXiv: 1905.05120v1

Figure 2. Memory scaling for typical concurrent partonic calculations as a function of number
of particles. The top right panel shows memory independent of the number of threads, while
the left and bottom right panels show the additional memory per thread. Figure is reproduced
from Ref. [24].
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the generated code from MadFlow can be directly run on either CPUs or GPUs. The MadFlow
authors compared the runtime of their implementation on a variety of GPUs and CPUs to
determine the overall performance improvement. While there is drastic improvements in
computation speed at low multiplicities, the gains at high multiplicity are less significant (see
Fig. 4).

2.3. MadGraph-GPU

The MadGraph-GPU framework builds on the MadGraph5 aMC@NLO program to auto-
generate CUDA code [26]. This was handled through a recursive process of optimizing the
output of the C++ generator line by line, instead of redesigning the code from the ground up
for GPUs. While only preliminary results are currently available for the process e+e� ! µ+µ�,
the performance is very promising (see Tab. 1).

3. Machine Learning: Matrix Elements
In addition to trying to more e�ciently use the available resources on high-performance
computers, other groups are investigating methods of estimating the matrix element e�ciently.
These estimates can then be used to reduce the number of exact matrix evaluations required
through a multiple step unweighting procedure. This new unweighting technique is referred to
as Neural Rejection Sampling [30]. The proposed algorithm first uses an approximation for the
matrix element, and then does a first accept-reject step. If the event fails, then there is no need

Bothmann et al, arXiv 2106.06507

https://arxiv.org/abs/2106.06507
https://arxiv.org/abs/2106.10279
https://arxiv.org/abs/2106.12631
https://arxiv.org/abs/2202.05991
https://arxiv.org/abs/2202.05991
https://arxiv.org/abs/1905.05120v1
https://arxiv.org/abs/2106.06507
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Machine Learning
• Machine learning methods have been used in 

HEP since the1990s [see Bhat, 2011 for a 
review]

• Recent advent of deep learning has 
boosted performance

• Classification and regression used in all 
steps of the HEP software pipeline

• Examples on the following slides

• Also many interesting talks in parallels

• Developments in machine learning are often 
driven by industry
• HEP benefits through the application of 

these techniques

• In most cases, aim for improved physics 
performance rather than improved speed
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The extreme rate at which the LHC collides protons, along with the 
size and complexity of the LHC detectors, results in the production of 
enormous data samples.

Real-time analysis
The LHC experiments use data-reduction schemes executed in real 
time, referred to as triggers, to identify which data to retain for future 
analysis and which to permanently discard. For example, the ATLAS 
and CMS experiments each keep only about 1 in every 100,000 events. 
Despite this, their data samples are each still about 20 petabytes per 
year. The first step in deciding which events to keep relies on logic that 
is encoded directly into the hardware to enable the fastest possible deci-
sions, such as into devices known as field-programmable gate arrays 
(FPGAs). Machine learning is already used in this environment; for 
example, CMS uses machine learning in its trigger hardware to better 
estimate the momentum of muons28, with the inputs to the algorithm 
discretized to enable the machine-learning response to be encoded in 
a large look-up table that is easily programmed into the FPGAs.

In addition, the LHC experiments use huge computing farms to pro-
cess the extreme volumes of data and search for interesting signatures. 
In the case of the LHCb experiment, many of the reactions of greatest 
interest do not produce striking signatures in the detector, making it 
necessary to thoroughly analyse high-dimensional feature spaces in 
real time to efficiently classify events29. Since the first year of LHCb 
data collection, the primary algorithm used for such classification has 
been machine-learning-based; specifically, a BDT was used for the 
first two years30, which has since been replaced by a MatrixNet algo-
rithm31. The use of machine learning is now ubiquitous, which has 
greatly improved performance while satisfying the stringent robustness 
requirements of a system that makes irreversible decisions. Currently, 
70% of all data retained are classified by machine-learning algorithms 
and all charged-particle tracks are vetted by neural networks32. As an 
example of the effect of these machine-learning methods, achieving the 
same sensitivity as a recent LHCb search for the dark-matter analogue 
of the photon, which was performed using data collected in 201633, 
would have required 10 years of data collection without the use of 
machine learning.

Actionable insights from computing metadata
Processing of the industrial-scale data samples collected by the LHC 
experiments is performed using the computing resources of the LHC 
Computing Grid, which are distributed across dozens of centres world-
wide. The massive volumes of data moved between grid centres, and 
the large number of CPU processing jobs used to access and analyse 
these data, generate an enormous amount of metadata information 
from which actionable insights can be extracted. Machine-learning 
techniques have recently begun to play a crucial part in increasing the 
efficiency of computing-resource usage at the LHC34–36. One example 
is predicting which data will be accessed the most, as currently mon-
itored by CMS37 and LHCb38, so that it becomes possible to optimize 
data storage at the grid centres. Another example involves monitoring 
data-transfer latencies over complex network topologies at CMS39, 
using machine learning to identify problematic nodes and to predict 
likely congestions. Currently, machine learning informs the choices of 
the computing-operations teams, but in the future it form the basis of 
fully automatic and adaptive models.

Machine learning as an established tool
After identifying and recording the most interesting LHC events and 
processing them on the Computing Grid—two vital tasks supported 
by machine learning—the data are ready for exploration. The first step 
in interpreting these data involves grouping the signals recorded by 
various sensor elements according to which particle created them. 
The types and properties of the particles can then be inferred from the 
subsets of event information associated with them. Finally, after recon-
structing all detected particles in the event, the data are analysed to 
determine the underlying physical processes that created the particles. 

Interpreting such complex data samples is an extremely challenging 
task, which has been revolutionized by the use of machine-learning 
techniques. About 2,000 journal articles have been produced by the 
LHC experiments to date, providing a large library of examples of the 
use of machine learning with these types of complex dataset. In this sec-
tion we discuss a few highlights, including the role of machine learning 
in the discovery of the Higgs boson23,24.

Determining particle properties
The use of machine learning to improve the determination of particle 
properties is now commonplace at all of the LHC experiments. For 
example, BDTs are used to increase the resolution of the CMS electro-
magnetic calorimeter40. When an electron or photon enters such a 
detector, it rapidly loses its energy, which is subsequently collected and 
measured by the calorimeter. This deposited energy is often recorded 
by many different sensors and the readings from these sensors must 
be clustered together to recover the original energy of the particle. 
Multivariate regression is used by CMS to train BDTs to provide cor-
rections to these inferred energies on the basis of all of the information 
contained in each calorimeter sensor. Applying these energy correc-
tions to the decay of a Z boson into an electron–positron pair results 
in a substantial improvement in mass resolution compared to the tra-
ditional clustering approach (see Fig. 1).

Discovery of the Higgs boson
As stated above, a Higgs boson is produced only once every few billion 
proton–proton collisions at the LHC; however, the Higgs boson usually 
decays in ways that mimic much more copiously produced processes. 
The cleanest experimental signature of the Higgs boson involves its 
decay into two muon–antimuon pairs, which occurs roughly once every 
10 trillion proton–proton collisions. This and a few other processes 
were used in the Higgs discovery analyses. Most were selected owing to 
their striking experimental signatures, which made it possible to obtain 
pure signals using relatively simple analyses. An important exception 
was the analysis of the Higgs boson decaying into two photons by the 
CMS experiment.

Fig. 1 | Machine learning for calorimetry at CMS. The mass distribution 
of Z bosons that decay to electron–positron pairs (Z → e+e−), as measured 
in the central part of the CMS detector and binned into 1-GeV bins, is 
shown for three cases: using only the raw information from the detector 
(orange), after clustering the data (green) and after applying the machine-
learning-based corrections discussed in the text (blue). The true position 
of the peak for this decay is 91 GeV. Image adapted from ref. 101 under a 
CC BY 4.0 license, copyright CERN, reused with permission.
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learning would have required the collection of about four times as much 
data. This is just one of many examples of high-precision tests of the 
standard model at the LHC for which machine learning has markedly 
increased the power of the measurement.

The emergence of deep learning
Machine learning in particle physics, including the examples presented 
in the previous two sections, has traditionally involved the use of 
field-specific knowledge to engineer tools to extract the features of the 
data that are expected to be the most useful for a given measurement. 
This enables the incredibly rich initial data to be interpreted using 
only a small number of features. For example, in the aforementioned 
Bs decay, a human-designed tracking algorithm first reconstructs the 
paths taken by the muon and the antimuon in a magnetized parti-
cle-physics detector, and from these paths the momenta of the particles 
are inferred. However, only the dimuon mass and the angle between 
them are used in the BDT. The rest of the kinematic information is 
discarded.

For many tasks, information can be lost when these human- 
designed tools are used to extract features that fail to fully capture the 
complexity of the problem. As in the fields of computer vision and 
natural language processing26,47, there is a growing effort in particle 
physics to skip the feature-engineering step and instead use the full 
high-dimensional feature space to train cutting-edge machine-learning 
algorithms, such as deep neural networks48. In this approach, domain 
expertise is used to design neural-network architectures that are best 
suited to the specific problem. Studies of such applications have grown 
substantially in number and complexity within the past several years, 
beginning around 2014 with applications of deep neural networks to 
data analysis49, quickly expanding to the first applications of computer 
vision50–52 and to the current broad study of deep learning throughout 
the field of particle physics53–56.

In this section we highlight a few recent applications of two types 
of deep learning algorithm in particle physics: convolutional and 
recurrent neural networks (CNNs and RNNs, respectively)57,58. The 
outputs of many particle-physics detectors can be viewed as images, 
and the application of computer-vision techniques is being explored in  
simplified settings by the LHC community59–65 and with initial studies 
on ATLAS and CMS simulations66,67. However, such techniques are 
more naturally applicable in the area of neutrino physics, for which 
reason we focus our discussion of CNNs to neutrino experiments. 
Similarly, there are many applications of RNNs, but for brevity we 
discuss only their use for the study of high-energy beauty quarks at 
ATLAS and CMS.

Computer vision for neutrino experiments
Loosely inspired by the structure of the visual cortex, CNNs use a strategy  
that decreases their sensitivity to the absolute position of elements in an 
image and that makes them more robust to noise. Deep CNNs are able 
to extract complex features from images and now outperform humans 
in certain image-classification tasks. Another strength of CNNs is their 
ability to identify objects in an image, as demonstrated for example 
by their use in self-driving cars, owing to translation-invariant feature 
learning. This translational invariance presents a challenge for the LHC 
experiments, whose detectors consist of layers of distinct detector tech-
nologies moving out from the proton–proton collision region. These 
detectors provide rich information in the absolute reference frame of 
the detector, which is transformed into a more natural format for a 
CNN-based approach. By contrast, this characteristic of CNNs is par-
ticularly useful for neutrino experiments, which necessarily use large 
homogeneous detectors owing to the incredibly small probability that 
a neutrino will interact within a small volume of material. A neutrino 
interaction can take place anywhere within these detectors and locating 
them is a critical part of neutrino-physics analyses.

The detectors of the NOvA experiment68 are filled with scintillating 
mineral oil, which emits light when a charged particle passes through 
it. Each NOvA event consists of two images: one taken from the top 
and the other from the side. The NOvA collaboration has developed 
a machine-learning algorithm52 composed of two parallel networks 
inspired by the GoogleNet69 architecture. The NOvA CNN extracts 
features from both views simultaneously and combines them to cat-
egorize neutrino interactions in the detector. This network, which 
improves the efficiency of selecting electron neutrinos by 40% with 
no loss in purity, has served as the event classifier in searches both for 
the appearance of electron neutrinos70 and for a new type of particle 
called a sterile neutrino71.

The detector at the MicroBooNE experiment72, which contains 90 
tonnes of liquid argon, detects neutrinos sent from the booster neu-
trino beamline at Fermilab. Each MircoBooNE event corresponds to a 
33-megapixel image that probably contains background tracks caused 
by cosmic rays. Identifying signals of neutrino interactions in such 
events, in which both the signal and background tracks vary in size 
from a few centimetres to metres, is one of the most challenging tasks 
of the experiment. MicroBooNE recently demonstrated the ability to 
detect neutrino interactions using a CNN73. Specifically, an algorithm 
called Faster-RCNN74 uses spatially sensitive information from inter-
mediate convolution layers to predict a bounding box that contains the 
secondary particles produced in a neutrino interaction. In Fig. 3 we 
show an example output in which the network successfully localized a 
neutrino interaction with high confidence. Finally, by taking advantage 
of accelerated computing on GPUs, these CNNs can run much faster 
than the conventional algorithms used by previous neutrino experi-
ments. This makes them ideally suited to the task of real-time image 
classification and object detection.

RNNs for beauty-quark identification
The study of high-energy beauty quarks is of great interest at the LHC 
because these particles are frequently produced in the decays of Higgs 
bosons and top quarks and are predicted to be important components 
of the decays of super-symmetric and other hypothetical particles. A 
high-energy beauty quark radiates a substantial fraction of its energy in 
the form of a collimated stream of particles, called a jet, before forming 
a bound state with an antiquark or two additional quarks. This radiation 
is emitted over a distance comparable to the size of a proton, making it 
impossible to observe the emission process directly. The beauty-quark 
bound states live for only a picosecond, corresponding to millimetre-  
to centimetre-scale flight distances at the LHC, before randomly 
decaying into one of a thousand possible sets of commonly produced 
particles. Therefore, to identify jets that originate from high-energy 
beauty quarks, it is necessary to be able to determine whether parti-
cles were produced directly in the proton–proton collision or in the 
subsequent decay of a long-lived bound state at a location displaced  

Table 1 | Effect of machine learning on the discovery and study of 
the Higgs boson

Analysis
Years of data 
collection

Sensitivity  
without machine  
learning

Sensitivity 
with machine 
learning

Ratio 
of P 
values

Additional 
data  
required

CMS24 
H → γγ

2011–2012 2.2σ,  
P = 0.014

2.7σ, 
P = 0.0035

4.0 51%

ATLAS43 
H → τ+τ−

2011–2012 2.5σ,  
P = 0.0062

3.4σ, 
P = 0.00034

18 85%

ATLAS99 
VH → bb

2011–2012 1.9σ,  
P = 0.029

2.5σ, 
P = 0.0062

4.7 73%

ATLAS41 
VH → bb

2015–2016 2.8σ,  
P = 0.0026

3.0σ, 
P = 0.00135

1.9 15%

CMS100 
VH → bb

2011–2012 1.4σ,  
P = 0.081

2.1σ, 
P = 0.018

4.5 125%

Five key measurements of three decay modes of the Higgs boson H for which machine learning 
greatly increased the sensitivity of the LHC experiments, where V denotes a W or Z boson, γ 
denotes a photon and b a beauty quark. For each analysis, the sensitivity without and with 
machine learning is given, in terms of both the P values and the equivalent number of Gaussian 
standard deviations σ. (We present only analyses that provided both machine-learning-based and 
non-machine-learning-based results; the more recent analyses report only the machine-learning-
based results.) The increase in sensitivity achieved by using machine learning, as measured by 
the ratio of P values, ranges roughly from 2 to 20. An alternative "gure of merit is the minimal 
amount of additional data that would need to be collected to reach the machine-learning-based 
sensitivity without using machine learning, which varies from 15% to 125%.
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Simulation
• For simulation, the ML method of 

choice is currently Generative 
Adversarial Networks (GANs)

• ATLAS fast calorimeter 
simulation uses GANs for selected 
phase space

• improves the modeling of hadronic 
shower fluctuations 

• LHCb Lamarr uses GANs for 
particle identification simulation, 
tracking efficiency and resolution

• Ongoing work for calorimeter 
simulation

• ALICE uses a GAN for fast simulation 
of their zero degree 
calorimeter
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Flavor tagging
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8

Detector performance

• Extensive (and exclusive) use of ML for flavor tagging for many years

• Example: Improvement in light jet rejection for ATLAS over the years

• Large improvement by the use of deep learning and GNNs

ATLAS



Other applications in reconstruction
• DUNE obtains superior performance for convolutional neural networks 

(CNNs) for energy and direction reconstruction
• Improved performance CMS-like detector with particle flow 

reconstruction with Graph Neural Networks (GNNs)

• Belle II full event interpretation with multivariate classifiers
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Figure 3: Neural network architectures for direction regression.

mean absolute percentage error loss for up to 100 epochs with early stopping. The 2-D models were
trained using Keras [24] with Tensorflow backend [25].

The direction regression is heavily dependent on the 3-D geometry in the data, thus we designed a
3-D CNN to exploit the structure in the data. The model is built on a series of “residual blocks” [26]
and a linear layer to output 3-D direction vectors (Figure 3a). Each “residual block” includes two
convolutional layers with {64, 128, 256, 512} number of filters respectively, which are both followed
by a batch normalization layer (Figure 3b). The input and the output within and between the “residual
blocks” are connected by the “shortcut connection”. All activation units except the output use
Rectified Linear Units (ReLU) [27]. The model is optimized using Adam with learning rate 0.01 with
learning rate decay for 200 epochs and mini-batch size 32 in Keras [24]. A cosine distance metric was
used during the training while a relaxed cosine distance was used for validation and testing. Using
regular cosine distance can avoid ambiguity during optimization. It distinguishes between exactly
opposite directions, though we can easily infer which hemisphere directions are located in from prior
knowledge. Thus we defined relaxed cosine distance loss for better performance as:
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3 Results

Figures 4a and 4b show the distribution of relaxed angular resolutions (3-D angle between recon-
structed and true directions) from the CNN and the traditional method for prong-only ⌫e and ⌫µ CC
events. The angular resolutions are used instead of cosine distances for visualization purposes. The
CNN model produced 13.3� and 4.8� angular resolution compared with 37.6� and 9.5� from the
traditional method, an improvement of 65% and 50% for electron and muon respectively. Figures
4c and 4d show the energy dependence of the RMS of the angular resolutions. The 3-D regression
CNN produced a more precise reconstruction for the whole neutrino energy range for both ⌫e and ⌫µ.
These results show the 3-D CNN can extract spatial information better than the traditional clustering
and fitting method.
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Figure 4: Direction reconstruction performance as angular resolution for ⌫e and ⌫µ CC. The 3-D
regression CNN produced more precise direction reconstruction than the traditional method.
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Fig. 11 Average runtime of the MLPF GNN model with a varying
input event size (upper) and the relative inference time when varying
the number of events evaluated simultaneously, i.e. batch size (lower),
normalized to batch size 1. For a simulated event equivalent to 200 PU
collisions, we see a runtime of around 50 ms, which scales approx-
imately linearly with respect to the input event size. We see a weak
dependence on batch size, with batching having a minor positive effect
for low-pileup events. The runtime for each event size is averaged over
100 randomly generated events over three independent runs. The tim-
ing tests were done using an Nvidia RTX 2060S GPU and an Intel
i7-10700@2.9GHz CPU. We assume a linear scaling between PU and
the number of detector elements

ical simulation. In this set of results, we apply no weighting
on the events or particles in the event.

In Fig. 7, we see that the η-dependent charged hadron effi-
ciency (true positive rate) for the MLPF model is somewhat
higher than for the rule-based PF baseline, while the fake
rate (false positive rate) is equivalently zero, as the delphes
simulation includes no fake tracks. From Fig. 8, we observe
a similar result for the energy-dependent efficiency and fake
rate of neutral hadrons. Both algorithms exhibit a turn-on
at low energies and show a constant behaviour at high ener-
gies, with MLPF being comparable or slightly better than the
rule-based PF baseline.

Furthermore, we see on Figs. 9 and 10 that the energy,
energy (pT) and angular resolution of the MLPF algorithm

are generally comparable to the baseline for neutral (charged)
hadrons.

Overall, these results demonstrate that formulating PF
reconstruction as a multi-task ML problem of simultane-
ously identifying charged and neutral hadrons in a high-PU
environment and predicting their momentum may offer com-
parable or improved physics performance over hand-written
algorithms in the presence of sufficient simulation samples
and careful optimization. The performance characteristics for
the baseline and the proposed MLPF model are summarized
in Table 1.

We also characterize the computational performance of
the GNN-based MLPF algorithm. In Fig. 11, we see that
the average inference time scales roughly linearly with the
input size, which is necessary for scalable reconstruction at
high PU. We also note that the GNN-based MLPF algo-
rithm runs natively on a GPU, with the current runtime at
around 50 ms/event on a consumer-grade GPU for a full
200 PU event. The algorithm is simple to port to comput-
ing architectures that support common ML frameworks like
TensorFlow without significant investment. This includes
GPUs and potentially even field-programmable gate arrays
(FPGAs) or ML-specific processors such as the GraphCore
intelligence processing units (IPUs) [67] through specialized
ML compilers [68–70]. These coprocessing accelerators can
be integrated into existing CPU-based experimental software
frameworks as a scalable service that grows to meet the tran-
sient demand [71–73].

5 Discussion and outlook

We have developed a ML algorithm for PF reconstruction in a
high-pileup environment for a general-purpose multilayered
particle detector based on transforming input sets of detec-
tor elements to the output set of reconstructed particles. The
MLPF implementation with GNNs is based on graph build-
ing with a LSH approximation for kNN, dubbed LSH+kNN,
and message passing using graph convolutions. Based on
benchmark particle-level tt and QCD multijet datasets gen-
erated using pythia 8 and delphes 3, the MLPF GNN
reconstruction offers comparable performance to the base-
line rule-based PF algorithm in delphes, demonstrating that
a purely parametric ML-based PF reconstruction can reach
or exceed the physics performance of existing reconstruc-
tion algorithms, while allowing for greater portability across
various computing architectures at a possibly reduced cost.
The inference time empirically scales approximately linearly
with the input size, which is useful for efficient evaluation
in the high-luminosity phase of the LHC. In addition, the
ML-based reconstruction model may offer useful features
for downstream physics analysis like per-particle probabil-
ities for different reconstruction interpretations, uncertainty
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Fig. 7 The efficiency of reconstructing charged hadron candidates as
a function of the generator particle pseudorapidity η in simulated QCD
multijet events with PU. Since the simulation does not contain fake
tracks, the charged hadron reconstruction is driven entirely by tracking
efficiency and is the same for MLPF and the rule-based PF

on tt, we observe a slight underprediction at high transverse
momentum for photons and neutral hadrons, which could
arise from the much greater numbers of low-pT particles rel-
ative to high-pT particles in this unweighted sample. Further
work is needed to improve the performance in the high-pT
tail of the distribution. We find that the model generalizes
well to the QCD sample that was not used in the training,
demonstrating that the MLPF-based reconstruction is trans-
ferable across different physics samples.

For the following results, we focus on the charged and neu-
tral hadron performance in QCD events, as hadrons make
up the bulk of the energy content of the jets and thus are
the primary target for PF reconstruction. We do not report
detailed performance characteristics for photons, electrons,
and muons at this time because of the limitations of the
delphes dataset and the rule-based PF algorithm. A real-
istic study of photon and electron disambiguation, in par-
ticular, requires a more detailed dataset that includes addi-
tional physics effects, as discussed in Sect. 2. In Fig. 5, we
present the charged and neutral hadron multiplicities from
both the baseline rule-based PF and MLPF algorithms as a
function of the target multiplicities. The particle multiplici-
ties from the MLPF model correlate better with the generator-
level target than the rule-based PF algorithm, demonstrat-
ing that the multi-classification model successfully recon-
structs variable-multiplicity events. In general, we do not
observe significant differences in the physics performance
of the MLPF algorithm between the QCD and tt samples in
the phase space where we have validated it.

In Fig. 6, we compare the per-particle multi-classification
confusion matrix for both reconstruction methods. We

Fig. 8 The efficiency (upper) and fake rate (lower) of reconstructing
neutral hadron candidates as a function of the generator particle energy
in simulated QCD multijet events with PU. The MLPF model shows
comparable performance to the delphesPF benchmark, with a some-
what lower fake rate at a similar efficiency

see overall a similar classification performance for both
approaches. The charged hadron identification performance
is driven by track efficiency and is the same for MLPF and the
rule-based PF. The neutral hadron identification efficiency
is slightly higher for MLPF (0.91 vs 0.88), since hadron
calorimeter cluster energies that are not matched to tracks
must be determined algorithmically for neutral hadron recon-
struction. The electron–photon misidentification is driven
by the parametrized tracking efficiency, as electromagnetic
calorimeter clusters without an associated track are recon-
structed as photons. Electron and muon identification per-
formance is shown simply for completeness, as it is driven
by the use of generator-level PID values for those tracks.
Improved Monte Carlo generation, subsampling, or weight-
ing may further improve reconstruction performance for par-
ticles or kinematic configurations that occur rarely in a phys-
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CMS-like improved 
physics performance

CMS-like linear timing 
scaling

DUNE electron direction 
reconstruction

https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_151.pdf
https://link.springer.com/content/pdf/10.1140/epjc/s10052-021-09158-w.pdf
https://arxiv.org/pdf/1807.08680.pdf


Track Efficiency and Duplicate Rate vs η
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Track reconstruction

• Tracking algorithms make the largest 
demands on CPU requirements

• Algorithms using machine learning are 
being explored by a number of 
groups, predominantly Graph 
Neural Networks, 
e.g.arXiv:1810.06111, 
arXiv:2003.11603, arXiv:2103.16701

• See arXiv:2012.01249 for a recent 
review

• Can also use machine learning to 
automatically tune the 
parameters of track reconstruction 
algorithms
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https://indico.cern.ch/event/1128328/timetable/#20220603
https://indico.cern.ch/event/1128328/timetable/#20220603
http://arxiv.org/abs/1810.06111
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https://arxiv.org/abs/2012.01249
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/


Open [Software, Data]
• The open source philosophy has long played an important role in software 

development

• At the LHC, first the results, then the software, then data and most 
recently the likelihoods of the LHC experiments have become open

• Reinterpretation can probe additional models

• However: can be challenging to use our software/data if you don’t have 
direct access to experts and significant hardware resources

• CERN Open Data Policy

31

https://reanahub.io/

https://www.hepdata.net/
https://github.com/cms-sw/cmssw
https://gitlab.cern.ch/atlas/athena
https://github.com/alisw/AliRoot
https://gitlab.cern.ch/lhcb
http://opendata.cern.ch/
https://atlas.cern/updates/news/new-open-likelihoods
https://cds.cern.ch/record/2745133


Conclusion
• Software plays a key role in essentially every component of modern HEP 

experiments

• Within HEP,  software been going through a period of rapid evolution 
due to more demanding experimental requirements and changing 
hardware environment

• Key features include

• Optimization and modernization
• Movement towards common software
• Increasing diversity of hardware architectures
• Impact of machine learning

• This rapid development will need to continue in preparation for future 
upgrades such as the HL-LHC

• For further details, I encourage you to consult the excellent talks from the 
parallel sessions
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