

Electroweak results and precision tests of the Standard Model

Jan Kretzschmar, University of Liverpool

12.7.2022

Z= - + FAL FAL + iFDX + h.c. + $\chi_i \mathcal{Y}_{ij} \chi_j \not = h.c.$ + $|\mathcal{D}_{\mu} \not = |\mathcal{V}(\not =)$

The Standard Model & Open Questions

The Standard Model & Open Questions

р

The Standard Model & Open Questions

- Hadron collider experiments continue to extract extraordinary results through ingenious data analyses
- ▶ Interpretation needs precise theory progress in field of higher-order QCD and EW calculations put to use

Colliders

1115

PETRA

QCD studies and the top-quark

Z(ee)+2 jets

$Z(\ell \ell)$ +jets

- High-precision measurements over wide range: up to 8 jets and jets beyond 1 TeV
- Critical testbed for QCD calculations:
 - new multijet-merged MC simulations (MadGraph FxFx and Sherpa 2.2.11) agree generally well with data
 - Highest precision given by NNLO fixed-order calculations, in agreement with data
- Validation of background predictions and signal simulation for current and future analyses

$Z(\ell \ell)$ +jets

- High-precision measurements over wide range: up to 8 jets and jets beyond 1 TeV
- Critical testbed for QCD calculations:
 - new multijet-merged MC simulations (MadGraph FxFx and Sherpa 2.2.11) agree generally well with data
 - Highest precision given by NNLO fixed-order calculations, in agreement with data
- Validation of background predictions and signal simulation for current and future analyses

$Z(\ell\ell)$ off-peak and forward

- New CMS result off Z-peak, test modern NNLO MCs (MiNNLOPS and Geneva)
- LHCb performs unique forward-rapidity measurement
- Constrain PDFs and develop MCs with impact on e.g. W-boson mass measurement

Jet production in DIS at HERA

- ▶ HERA DIS data ($ep \rightarrow eX$) important to determine proton PDFs
- Adding *ep* jet data improves gluon uncertainty \rightarrow HERAPDF2.0JetsNNLO
- ... and allows to measure $\alpha_5(m_Z) = 0.1138 \pm 0.0014(\exp)^{+0.0004}_{-0.0008}(\mathrm{model})^{+0.0008}_{-0.0007}(\mathrm{scale})$:

Jet production in DIS at HERA

- ▶ HERA DIS data ($ep \rightarrow eX$) important to determine proton PDFs
- ▶ Adding *ep* jet data improves gluon uncertainty → HERAPDF2.0JetsNNLO
- ... and allows to measure $\alpha_5(m_Z) = 0.1138 \pm 0.0014(\exp)^{+0.0004}_{-0.0008}(\mathrm{model})^{+0.0008}_{-0.0007}(\mathrm{scale})$:

Jan Kretzschmar, 12.7.2022

Impact of LHC data on PDFs

- LHC data an important source of information on PDFs
- ▶ New CMS W + c result sheds light on strange density: most precise result to date; start to constrain $s \bar{s}$ asymmetry through ratio $W^+ + \bar{c}/W^- + c$
- New ATLASpdf21 with diverse ATLAS data: constrain high-x d/u ratio, in agreement with recent fixed-target SeaQuest Drell-Yan data

NNPDF3.1

CMS

0.939

 ± 0.020

+0.001

 0.950 ± 0.005 (stat) ± 0.010 (syst)

+0.020

+0.001

Top-quark pair production

- Important QCD benchmark and gluon constraint
- New ATLAS measurement of $\sigma(t\bar{t})$ at $\sqrt{s} = 5.02 \text{ TeV}$: 3.9% precision
- New ATLAS+CMS combinations of $\sigma(t\bar{t})$ at $\sqrt{s} = 7$ TeV and 8 TeV: 2.5% precision

Differential $t\bar{t}$

- ▶ Precise measurements using reconstruction with resolved and "merged" objects well into the TeV range
- Compatible with SM predictions, specifically NNLO predictions (and often more precise than theory)
- **•** Data used to constraint anomalous top-quark interactions $C_{tq}^{(8)}$ and C_{tG}

Jan Kretzschmar, 12.7.2022

Differential $t\bar{t}$

- Precise measurements using reconstruction with resolved and "merged" objects well into the TeV range
 Compatible with SM predictions, specifically NNLO predictions (and often more precise than theory)
- **>** Data used to constraint anomalous top-quark interactions $C_{ta}^{(8)}$ and C_{tG}

Jan Kretzschmar, 12.7.2022

Single top production

- ▶ New CMS *Wt* result: $\sigma = 79.2 \pm 0.8 (\text{stat})^{+7.0}_{-7.2} \text{syst} \pm 1.1 (\text{lumi}) \text{ pb}$
 - Consistent with SM prediction
 - Robust against procedure to remove "overlap" with $t\bar{t}$
- New ATLAS *s*-channel result: $\sigma = 8.2^{+3.5}_{-2.9}$ pb
 - using Matrix Element Method to obtain 3.3σ evidence for this challenging channel, a first at 13 TeV

Precision Observables

EPJC 78 (2018) 675 , arXiv:2112.07274

 $\Gamma(Z \rightarrow \nu \nu)$

arXiv:2206.07110 (CMS)

Top quark mass

- Full profile-likelihood fit using 5 input distributions
- All modelling variations performed inside Pohweg+Pythia8 (PDFs, QCD scales in ME, ME/PS matching, 32 decorrelated ISR/FSR PS scales, colour reconnection, underlying event tune parameters, top p_T)
- ▶ Final result of $m_{
 m top} = 171.77 \pm 0.38$ GeV (stat. error of ± 0.04 GeV)
- Best single measurement to date, several strongly constrained systematics

Jan Kretzschmar, 12.7.2022

Top quark mass

- Full profile-likelihood fit using 5 input distributions
- All modelling variations performed inside Pohweg+Pythia8 (PDFs, QCD scales in ME, ME/PS matching, 32 decorrelated ISR/FSR PS scales, colour reconnection, underlying event tune parameters, top p_T)
- Final result of $m_{top} = 171.77 \pm 0.38$ GeV (stat. error of ± 0.04 GeV)
- Best single measurement to date, several strongly constrained systematics

Jan Kretzschmar, 12,7,2022

Status before 2022

- ► Key observable in the SM EW fit: predicted from other parameters $m_W = 80\,355 \pm 6$ MeV
- Already pre-2022 best measurements from hadron colliders:
 - ▶ TeVatron pp̄: D0 (±23 MeV) and CDF (±19 MeV)
 - LHC pp: ATLAS (±19 MeV) and LHCb (±32 MeV)
- Extreme demands on detector understanding
- Notoriously hard to control theory modelling to "compensate" for the unmeasured neutrino in $W \rightarrow \ell \nu$
- Ongoing LHC/TeVatron Electroweak WG effort towards combination – understand theoretical correlations between measurements: prime examples PDFs and lepton angular correlations (A_i)
 - E.g. description of W A_i in legacy Resbos codes not ideal, motivates of O(10 MeV)
 - Recent LHCb measurement of A_i in $Z \to \ell \ell$

Status before 2022

- Key observable in the SM EW fit: predicted from other parameters m_W = 80 355 ± 6 MeV
- Already pre-2022 best measurements from hadron colliders:
 - ▶ TeVatron $p\bar{p}$: D0 (±23 MeV) and CDF (±19 MeV)
 - LHC pp: ATLAS (±19 MeV) and LHCb (±32 MeV)
- Extreme demands on detector understanding
- ▶ Notoriously hard to control theory modelling to "compensate" for the unmeasured neutrino in $W \rightarrow \ell \nu$
- Ongoing LHC/TeVatron Electroweak WG effort towards combination – understand theoretical correlations between measurements: prime examples PDFs and lepton angular correlations (A_i)
 - E.g. description of W A_i in legacy Resbos codes not ideal, motivates of O(10 MeV)
 - Recent LHCb measurement of A_i in $Z \to \ell \ell$

- Muons calibrated using high-statistics $J/\psi \rightarrow \mu\mu$ sample and transferred to electrons via E/p
- Measurement of Z-boson mass: $M_Z = 91192.0 \pm 6.4 (stat) \pm 4.0 (syst)$ MeV in agreement with I FP
- W and Z boson production and decay simulated using RESBOS, $p_T(Z)$ spectrum tuned to Z data and validated on W
- Fit to m_T , p_T^{ℓ} and p_T^{ν} for $W \to e\nu$ and $W \to \mu\nu$

- Muons calibrated using high-statistics $J/\psi \rightarrow \mu\mu$ sample and transferred to electrons via E/p
- Measurement of Z-boson mass: $M_Z = 91192.0 \pm 6.4(\text{stat}) \pm 4.0(\text{syst})$ MeV in agreement with LEP
- W and Z boson production and decay simulated using RESBOS, p_T(Z) spectrum tuned to Z data and validated on W
- Fit to m_T , p_T^{ℓ} and p_T^{ν} for $W \to e\nu$ and $W \to \mu\nu$

- ▶ Muons calibrated using high-statistics $J/\psi \rightarrow \mu\mu$ sample and transferred to electrons via E/p
- Measurement of Z-boson mass: $M_Z = 91\,192.0 \pm 6.4(\text{stat}) \pm 4.0(\text{syst})$ MeV in agreement with LEP
- W and Z boson production and decay simulated using RESBOS, p_T(Z) spectrum tuned to Z data and validated on W
- Fit to m_T , p_T^ℓ and p_T^ν for $W \to e\nu$ and $W \to \mu\nu$
- Measurement of *W*-boson mass: $M_W = 80\,433.5 \pm 6.4(\text{stat}) \pm 6.9(\text{syst}) \text{ MeV}$
 - Factor 2 better precision than any previous result
 - 7σ away from the SM EW fit prediction!

Multiboson interactions

- New: ATLAS $Z(\ell \ell)\gamma$ + jets selection enriched in ISR photon production
- High statistics, high-precision channel to study additional QCD radiation in multiboson environment: 4-10% uncertainties
- Compared to state-of-the art (N)LO multijet-merged and NNLO predictions from Sherpa, MadGraph+Pythia, Powheg MiNNLOPS, MATRIX: good description of data in wide range

m, [GeV]

- Electroweak VVjj production can proceed in transverse
 (T) or longitudinal (0) polarisation states
- Longitudinal (00) component intertwined with Higgs mechanism & probes VBS unitarization: long term goal for the HL-LHC
 - currently measurements focus on polarisation or VBS
- New: first measurement of joint polarisation states in inclusive WZ production by ATLAS using DNN reconstruction techniques – observation of double-longitudinal component with > 7σ

CMS-PAS-SMP-21-011

VBS $W(\ell\nu)\gamma$

- Growing list of observed electroweak VVjj production
- New: CMS observation of VBS $W\gamma jj$ with $> 6\sigma$
- ► Selection of W(ℓν) balanced by a high-mass m_{jj} dijet system with large rapidity gap, complex background
- Good agreement with SM: differential cross sections, limits on anomalous quartic couplings

Jan Kretzschmar, 12,7,2022

VBS $Z(\nu\nu)\gamma$ and $W^+W^-(\ell\nu\ell\nu)$

- Many VBS analyses use MVA techniques: input variables on the dijet system, the central system as well as their correlations; background general challenge
- ▶ New: ATLAS study of VBS $Z(\nu\nu)\gamma jj$ with $p_{T}^{\gamma} > 150 \text{ GeV}$, good agreement with SM, aQGC limits derived; combined with prior lower p_{T}^{γ} study: 6.3 σ observation
- ▶ New: CMS observation of opposite-charge VBS W^+W^- at 5.6 σ

Exclusive Production

Exclusive $PbPb \rightarrow Pb(\gamma\gamma \rightarrow \tau\tau)Pb$

- arXiv:2206.05192 (CMS), arXiv:2204.13478 (ATLAS)
- Photon-induced di-tau production sensitive to anomalous magnetic moment a_{\tau}:

$$a_{\ell}=\frac{g_{\ell}-2}{2}=\frac{\alpha}{2\pi}+\ldots\approx 0.0012$$

- New results by ATLAS + CMS using LHC HI collisions observe clearly exclusive ττ production; τs reconstructed with low p_τ muon, hadronic 1/3-prongs or electrons
- Current limits on a_{τ} similar to prior LEP results, statistically limited

- Both CMS and ATLAS have Run 2 data with forward proton spectrometers (CT-PPS / AFP): unique way of detecting exclusive production with intact forward protons
- ▶ ATLAS: first measurement of tagged of $\gamma\gamma \rightarrow \ell\ell$
- ▶ New: CMS search for $\gamma\gamma \rightarrow p(WW)p$ and $\gamma\gamma \rightarrow p(ZZ)p$ with hadronic, boosted $V \rightarrow J$ – no signal (as expected), sensitivity for anomalous effects at high mass
- New: CMS search for exclusive $p(t\bar{t})p$: $\sigma < 0.59 \,\text{pb}$

2 0.4 BDT output 24

CMS-PAS-TOP-21-007 . CMS-PAS-SMP-21-014 . PRL 125 (2020) 261801 (ATLAS)

- Experiments continue to extract extraordinary results, especially from the rich LHC Run 2 data
 - Precise, differential measurements over wide kinematic ranges
 - Exciting new result on the top-quark mass and W-boson mass – call to experimental collaborations for more work
 - Multiboson studies with many "fundamental firsts"
 - Exclusive reactions
- Interpretation often limited by theory push towards higher-order predictions and use of data constraints
- LHC Run 3 data will give further opportunities

June 26, 2022

In 2012, D0 published a measurement of the W boson mass using 5.3 fb⁻¹ of Tevatron data (Phys. Rev. Lett. **108**, 151804 (2012)), with a subsequent longer description (Phys. Rev. D **89**, 012005 (2014)). This measurement, $m_w = 80,375 \pm 23$ MeV, remains the official D0 result.

A study of the remaining approximately 5 fb⁻¹ of data taken between 2009 and 2011 showed that the deterioration of the detector due to radiation damage effects, combined with the higher pileup owing to the increased instantaneous luminosity, precludes a further precision measurement of the W boson mass.

Correction	$\delta m_W^{\rm QCD}$ [MeV]					
	$p_{\rm T}^W$ -constrained			No constraint		
	p_{T}^{ℓ}	m_{T}	p_{T}^{ν}	p_{T}^ℓ	m_{T}	p_{T}^{ν}
Invariant mass	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Rapidity	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
A_0	7.6	10.0	15.8	16.0	12.6	19.5
A_1	-2.4	-1.9	-1.8	-1.2	-1.6	-1.4
A_2	-3.0	-2.6	2.9	-4.2	-3.0	2.3
A_3	2.9	1.6	-0.5	3.5	1.8	-0.2
A_4	2.4	-0.1	-0.5	0.1	-0.7	-1.0
$A_0 - A_4$	7.6	7.0	16.0	14.1	9.1	18.9
Total	7.6	7.0	16.0	14.1	9.1	18.9
ResBos2	7.3±1.1	8.4±1.0	16.6±1.2	13.9±1.1	10.3±1.0	19.8±1.2
Non-closure	-0.3±1.1	1.4 ± 1.0	0.6±1.2	-0.2±1.1	1.2 ± 1.0	0.9±1.2

Table 5: Effect of reweighting the angular coefficients in the D0 ResBos1 events to those of ResBos2, as well as a direct fit of ResBos1 to ResBos2. Good closure is observed.

ATL-PHYS-PUB-2018-026

