# Astrophysical searches for dark matter

Teresa Marrodán Undagoitia marrodan@mpi-hd.mpg.de

ICHEP 2022



# Dark matter in Cosmology and Astronomy

#### Overwhelming evidence for dark matter in our Universe













ACDM describes all observations very well

Previous talk by Gianfranco

BUT what is the nature of dark matter?

Well motivated theoretical approach:

#### **WIMP**

(Weakly Interacting Massive Particle)

Dark matter could be however non weakly-interacting or a completely different type of particle

# How can we look for dark matter?

Indirect detection



 $\chi \overline{\chi} \rightarrow \gamma \gamma, q \overline{q}, \dots$ 

Direct detection



 $\chi N \rightarrow \chi N$ 

Production at LHC



$$p+p\to \chi\overline{\chi}+X$$

#### Indirect detection: ingredients

- Where? → location
  - Galactic center (GC), galactic halo
  - ► Subhaloes, dwarf spheroidals (DSph), the Sun ..
- Into what? → particles produced (annihilation or decay)
  - $\chi \overline{\chi} \rightarrow \gamma \gamma, \gamma Z, \gamma H$
  - $\chi \overline{\chi} \rightarrow q \overline{q}$ ,  $W^+ W^-$  fragmentation into  $\rightarrow e^+ e^-$ ,  $p \overline{p}$ ,  $\nu$ 's

#### Expected particle flux:

$$\frac{d\Phi_p}{dE} = \frac{\langle \sigma_A v \rangle}{4\pi 2m_\chi^2} \cdot \frac{dN_p}{dE} \cdot J(\Delta\Omega), \quad J(\Delta\Omega) = \int d\Omega \int \rho^2(\ell) d\ell$$

with  $\ell$  the coordinate along the line of sight

- How measured? → detector technology
  - Satellites or balloons measuring charged particles,  $\gamma$ 's or X-rays
  - Cherenkov telescopes and large neutrino observatories

# Technologies for indirect detection of dark matter



# Indirect detection: particle propagation



Figure credit: Juan Antonio Aguilar and Jamie Yang, IceCube/WIPAC

#### *Indirect searches with* $\nu$ 's



- Limits from  $\nu$ -experiments on annihilation not yet competitive with  $\gamma$ -ray bounds
- Dark matter can be trapped in the Sun due to scattering consequent annihilation into GeV neutrinos
  - → Competitive spin-dependent scattering constrains (compared with DD results)

#### *Exclusion limits from* $\gamma$ *searches*



Combined limit of dwarf spheroidals from Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS, PoS ICRC2021 (2021) 528



Expected upper limit for SWGO and CTA observations of the GC halo, PoS ICRC2021 (2021) 555

- Dwarf spheroidal observations give best constrains in ~ (1 − 100) GeV
- Galactic center by HESS (and HAWC) most sensitive at TeV energies

#### $\gamma$ searches: galactic center excess



Figures from S. Murgia, Annu. Rev. Nucl. Part. Sci. (2020) 70:455

- Excess of  $\gamma$ -rays at the Galactic Center
- $\bullet$  Signal consistent with a dark matter particle with a mass of  $\sim 50\, GeV$
- Other interpretations possible: millisecond pulsars

#### *X-ray searches and the 3.5 keV line*

- Search for monoenergetic signals from decaying dark matter, e.g. sterile neutrino  $\chi \to \nu_\ell \, \gamma$
- X-ray line at 3.5 keV in the XMM-Newton and Chandra satellites
   Present in several nearby galaxies and galaxy clusters
   but not found in large statistic searches (Dessert et al. 2018 & Foster et al. 2021)



#### Charged particles: positron excess



- Positron excess observed by PAMELA in 2008
- Confirmed by AMS-02 and measured at higher energies
- Unclear origin of source term: dark matter annihilation or local pulsars
- → Interesting upcoming searches with antinuclei in GAPS

#### Indirect detection summary

Variety of objects of interest & searches
with stringent limits touching into the thermal relic cross section
Please look at the talks on the parallel sessions on Friday

Several signals being discussed since years

o unclear origin: dark matter?

or an astrophysical background?

further studies/data will help to clarify

What does direct detection tell us?

# Direct detection: dark matter in the Milky Way

$$\frac{dR}{dE}(E,t) = \frac{\rho_0}{m_\chi \cdot m_A} \cdot \int \mathbf{v} \cdot f(\mathbf{v},t) \cdot \frac{d\sigma}{dE}(E,\mathbf{v}) d^3\mathbf{v}$$

 $E_R \sim \mathcal{O}(10 \, \text{keV})$ 



#### Astrophysical parameters:

- $\rho_0$  = local density of the dark matter in the Milky Way
- $f(\mathbf{v}, t) = \text{WIMP velocity distribution}$

#### Parameters of interest:

- $m_{\chi}$  = WIMP mass (~ 100 GeV)
- σ = WIMP-nucleus elastic scattering cross section (SD or SI)

# Detector requirements and signatures

- Large detector mass (grams up to several tonnes)
- Low energy threshold ~ few keV's or sub-keV
- Very low background and/or background discrimination (from γ's, e-'s, neutrons and ν's!)



#### Other signatures of dark matter

- Annual modulated rate
- Directional dependance



#### Overview of WIMP searches



Figure modified from Rept. Prog. Phys. 85 (2022) 5, 056201

# Direct detection experiments



J. Phys. G43 (2016) 1, 013001& arXiv:1509.08767

# Annual modulation signature

- DAMA experiment @LNGS using ultra radio-pure Nal crystals
- Annual modulation of the background rate in the energy region (2 – 6) keV
- Last results (2021): signal at 13.7  $\sigma$





ANAIS using NaI crystals @Canfranc:

- DAMA modulation disfavoured at 3.3  $\sigma$  for [1-6] keV at 2.6  $\sigma$  for [2-6] keV
- Experiment continuously taking data

# Tests of annual modulation with NaI



#### Bolometer experiments







EDELWEISS experiment



Super-CDIVIS experiment

- Excellent sensitivities (low  $m_{\chi}$ ) due to their low energy thresholds
- CRESST: scintillating bolometer
   CRESST, PRD 100 (2019) 102002 (E<sub>th</sub> = 30 eV) → New data release @iDM in the next weeks!
- CDMS/EDELWEISS: germanium bolometers
   CDMS-Lite, PRD 99 (2019) 062001 (E<sub>th</sub> = 70 eV)

#### Results from cryogenic bolometers



New SuperCDMS HVeV result with 0.93 g silicon crystal with  $E_{th} \sim 10 \text{ eV}$  missing in this figure PRD 105, 112006 (2022)

#### Low threshold searches with CCDs



SENSEI PRL 125 (2020) 171802



**DAMIC**PRL 123, 181802 (2019)



**DANAE**EPJC 77 (2017) 12, 905



DMSQUARE
N. Avalos@TAUP2021

#### particle tracks



From Nuria Castelló-Mor @ICHEP2022 (DAMIC)

- Gram-scale Si detectors with E<sub>th</sub> ~ 50 eV<sub>ee</sub>
- 3D track reconstruction
- Test of DM-e<sup>-</sup> scattering below to 1 MeV DM mass & low mass WIMPs tests
- → Future: OSCURA, a 10 kg detector by SENSEI&DAMIC



DM-e<sup>-</sup> scattering (light mediator) SENSEI, PRL 125 (2020) 171802

#### The DEAP single phase LAr detector

#### **DEAP** - LAr detector at SNOLAB, Canada

Dark matter Experiment with Argon and Pulse shape discrimination

- 3 600 kg total mass & 3 280 kg fiducial volume
- Results of 231 d DEAP, PRD 100 (2019) 022004
- Most competitive liquid argon results







From Jan. 2018 to Mar. 2020: blinded data → analysis on-going

#### Two phase noble gas TPC



- Position resolution
  - → XY from PMT pattern
  - → Z from drift time

- Scintillation signal (S1)
- Charges drift to the liquid-gas surface
- Proportional signal (S2)
- → Electron- /nuclear recoil discrimination



# The DarkSide experiment

Top SiPM array



- DarkSide-50 run @LNGS with 50 kg mass
   DarkSide, PRD 98 (2018) 102006 & PRL 121 (2018) 8, 081307
- DarkSide-20K: new global LAr collaboration
  - 50 t total target mass

Dark matter searches

- TPC inside an acrylic vessel
- SiPM for light read-out (~ 19 m²)

 Aiming at high mass dark-matter search
 ROI (20 – 200) keV<sub>nr</sub>
 → filling with underground argon planned for 2026



#### XENON1T results



- XENON1T operated at LNGS from 2016 to 2019 providing several world leading results in the last years
  - Migdal result: depends on the experimental confirmation of this effect
- Excess of events in (1-7) keV in the background (ER) region
  - → Unclear origin: XENONnT data will clarify very soon

#### Current generation: LZ, PandaX-4T and XENONnT



LZ:

- 7 T target mass
- First data released last Thursday!



PANDAX-4T:

- 4T target mass
- First data released in July 2021



XENONnT:

- 6T target mass
- First data about to be released!
- $\rightarrow$  A race to measure WIMPs down to  $\sigma \sim 10^{-48} \, \text{cm}^2$

#### LZ results from last Thursday & XLZD



- SR1: 5.5t and 60 days
- Currently best exclusion limit

# XLZD: XENON, LZ and DARWIN together

Common paper with physics case: arXiv:2203.02309



DARWIN, JCAP 1611 (2016) no.11, 017, arXiv:1606.07001



DARWIN, XENON + LUX ZEPLIN meeting in Karlsruhe, July 2022

# Other detectors and technologies being developed ...

... but not discussed in this talk



28/36

#### Summary

Direct & indirect searches are quickly progressing covering a large DM range in mass and cross section

Exploring WIMPs but also light DM, ALPs, dark photons ...

Current signals/excesses are not confirmed or have alternative explanations

We hope for a dark matter discovery soon, ideally in various detectors/searches!

#### THANK YOU!

# Backup: Cross sections for WIMP elastic scattering

- Spin-independent interactions: coupling to nuclear mass  $\sigma_{SI} = \frac{m_N^2}{4\pi(m_N + m_N)^2} \cdot [Z \cdot f_p + (A Z) \cdot f_n]^2, \quad f_{p,n} \text{: eff. couplings to } p \text{ and } n$
- Spin-dependent interactions: coupling to nuclear spin

$$\sigma_{SD} = \frac{32}{\pi} \cdot G_F \cdot \frac{m_\chi^2 m_N^2}{(m_\chi + m_N)^2} \cdot \frac{J_{N+1}}{J_N} \cdot \left[ a_p \langle S_p \rangle + a_n \langle S_n \rangle \right]^2$$

 $\langle S_{p,n} \rangle$ : expectation of the spin content of the p, n in the target nuclei  $a_{p,n}$ : effective couplings to p and n

#### Testing the low energy excess in XENON1T



- XENON1T excess in (1-7) keV
- PandaX spectrum dominated by tritium
- LZ spectrum dominated by <sup>37</sup>Ar
- XENONnT essential to clarify the excess
  - → data release very soon!





# Low-mass WIMP searches using the Migdal effect



Scheme from Dolan et al., PRL 121 (2018)101801

- Sudden acceleration of a nucleus can lead to excitation or ionization of the shell electrons
   Ibe et al., JHEP 03 (2018) 194
- Yet no experimental evidence of this effect!
- Two strategies being followed:
  - MIGDAL collaboration: ER+NR vertex in a low pressure gaseous detector
  - Nakamura et al.: two clusters (NR + X-ray) in position sensitive gaseous detector Nakamura et al., (2020) arXiv:2009.05939

#### Directional searches

→ Not competitive with liquids or solids at the moment but important confirmation in case of a WIMP detection



- DRIFT @Boulby m<sup>3</sup> experiment: important technology milestone
   DRIFT, Phys. Dark Univ. 9-10 (2015) 1 & Astropart.Phys. 91 (2017) 65
- Operation of a 'large-scale' experiment

- **CYGNUS**: international proto-collaboration to measure DM and  $CE\nu NS$  of solar  $\nu$ 's exploring directionality & particle identification CYGNUS (2020) arXiv:2008.12587
- Including previous efforts from DRIFT, MIMAC, DMTPC, NEWAGE & new developments like CYGNO

Note also the directional searches with nuclear emulsion detectors

#### Superheated fluid detectors

#### **COUPP** experiment



- Energy depositions > E<sub>th</sub>
   → expanding bubble
   detected with cameras +
   piezo-acoustic sensors
- Bubble chamber with C<sub>3</sub>F<sub>8</sub> superheated fluid

Great sensitivity to spin-dependent σ



Figure from Eric Vázquez Jáuregui @ICHEP2022

- PICO40L: about to take data @SNOLAB
- PICO-500: ton-scale experiment to be installed in the miniCLEAN space @SNOLAB on 2023-2024

#### NEWS-G experiment



- Metallic vessel filled with a noble gas mixture
- Single anode in the middle
- Low energy threshold ~ (10 − 15) eV
- Low-A target atoms increases sensitivity to low-mass WIMPs

- New sphere of 140 cm Ø filled with CH4
- Operated in LSM, 10 d of data → SD results
- Commissioning just finished at SNOLAB
- Data taking starting now

Talk K. Nikolopoulos @ICHEP2022



# Backgrounds and reduction strategies

- External  $\gamma$ 's from natural radioactivity:
  - Material screening & selection + Shielding
- External neutrons: muon-induced,  $(\alpha, n)$  and from fission reactions
  - Go underground!
  - Neutron shielding
  - material selection for low U and Th concentrations
  - + Neutrinos from the Sun, atmospheric and from supernovae



- Internal backgrounds:
  - Liquids/gases: radioactive isotopes, Rn-emanation
  - Solids: surface events from  $\alpha$  or  $\beta$ -decays
  - Cosmogenic activation important for all