

ICHEP 2022

Bologna, Italy, July $6^{\mathrm{th}}-13^{\mathrm{th}}$ 2022

LHCb in a nutshell

- LHCb originally designed for the study of CP violation and rare decays in beauty and charm \rightarrow and now a general purpose detector!
- $b\bar{b}$ production in pp collisions mostly in the forward direction

- Run 1+2: 9fb⁻¹ of pp collisions (+pPb, PbPb, fixed-target mode)
- LHCb = 1.5k members, 1070 authors, 95 institutes,
 - 21 countries

JINST 3 (2008) S08005

 \rightarrow forward spectrometer (2< η <5) with excellent vertexing, tracking and particle identification (K/ π /p/ μ /e/ γ)

Physics programme overview

600 published papers

TODAY:

- New exotic hadron states
- CP violation and mixing
- New rare decays results
- Electroweak measurements
- Heavy ions and fixed target

Exotic hadronic states

Search for exotic hadronic states

- Several conventional and exotic hadronic states discovered at the LHC, many of them (59/66) by LHCb
 - key to study of non-perturbative QCD

• nature of exotic states still unclear: loosely (hadronic molecule) or tightly bound?

Entering a new Era!

- LHCb report the observation of new exotic states
 - $T_{c\bar{s}0}^a(2900)^{++}, T_{c\bar{s}0}^a(2900)^0$ (tetra-quark states)
 - $P_{ws}^{\Lambda}(4438)^{0}$ (penta-quark state)

New naming convention proposed by LHCb

arXiv:2206.15233

New tetra- and pentaguark states

• Isospin pair of doubly charged and neutral tetraquarks:

$$T^a_{c\bar{s}0}(2900)^{++}\;(c\bar{s}u\bar{d})$$
 and $T^a_{c\bar{s}0}(2900)^0\;(c\bar{s}\bar{u}d)$

LHCb-PAPER-2022-026/027 (in preparation)

• First strange pentaquark: $P_{\psi s}^{\Lambda}(4438)^0 (c\bar{c}uds)$

LHCb-PAPER-2022-031 (in preparation)

 \rightarrow R. Ma & N. Neri in parallel sessions

CP violation and mixing

CP violation in $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$

• Observed CPV in four decay channels:

$$B^{\pm} \to K^{\pm} \pi^{+} \pi^{-}, B^{\pm} \to K^{\pm} K^{+} K^{-}, B^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}, B^{\pm} \to \pi^{\pm} K^{+} K^{-}$$

• Localised CP asymmetries

High localised CP asymmetries \rightarrow learn about the relation between decay channels (via $\pi\pi \leftrightarrow KK$ rescattering)

 $\frac{\text{LHCb-PAPER-2021-049}}{\text{050}}$

CKM angle γ and charm mixing

- γ from combination of 15 *B*-decay and 9 *D*-decay LHCb measurements
 - simultaneous fit of γ and D^0 mixing parameters ($x \equiv \Delta M/\Gamma$ and $y \equiv \Delta \Gamma/2\Gamma$)

• New measurement of γ with $B^{\pm} \to D(\to K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp})K^{\pm}$

$$\gamma = \left(54.8^{+6.0}_{-5.8}(\text{stat})^{+0.6}_{-0.6}(\text{syst})^{+6.7}_{-4.3}(\text{ext})\right)^{\circ}$$

- (second) most precise single determination of γ
- largest A_{CP} ever measured [in one phase-space bin]

<u>LHCb-PAPER-2022-017</u> (in preparation)

Charm mixing

• Lifetime difference between $D^0 \to K^-\pi^+$ and $D^0 \to f$ $(f = \pi^+\pi^-, K^+K^-)$

$$\frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to f)} - 1 = y_{CP}^f - y_{CP}^{K\pi} \approx y(1 + \sqrt{R_D}) \qquad y_{CP} - y_{CP}^{K\pi} = (6.96 \pm 0.26 \pm 0.13) \times 10^{-3}$$

• Charm mixing parameters in $D^0 \to K_{\rm S}^0 \pi^+ \pi^-$ decays from $\bar B \to D^0 \mu^- \bar \nu_\mu X$ \to "bin-flip" method

LHCb-PAPER-2022-020 (in preparation)

First charm CPV in single channel

- CPV in charm small in the standard model ⇒ sensitive to new physics
- CPV in charm observed in time-integrated difference of CP asymmetries $\Delta A_{\rm CP} = A_{\rm CP}(K^+K^-) A_{\rm CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4} \ _{\rm [PRL\ 122\ (2019)\ 211803]}$
- New measurement of $A_{CP}(K^-K^+)$:

$$A_{\rm CP}(K^-K^+) = [6.8 \pm 5.4 \,({\rm stat}) \pm 1.6 \,({\rm syst})] \times 10^{-4}$$

and determine the direct CP asymmetries

$$a_{K^-K^+}^d = (7.7 \pm 5.7) \times 10^{-4}$$

 $a_{\pi^-\pi^+}^d = (23.2 \pm 6.1) \times 10^{-4}$

- $\rightarrow 3.8\sigma$ evidence for direct CP violation in $D^0 \rightarrow \pi^-\pi^+$!
- → unclear if SM or new dynamics in charm decays

-20

-40

-20

 $a_{\text{K}^-\text{K}^+}^{\text{d}} [10^{-4}]$

Rare decays

Lepton flavour universality

- LFU in $b \to c\ell\nu$ decays
 - tree-level processes involving 2^{nd} & 3^{rd} generations show 3.3σ tension with SM
 - Recent input from LHCb:
 - observation of $\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}$ PRL 128 (2022) 191803 0.2 HELAN SM Prediction R(D) = 0.299 ± 0.003 R(D*) = 0.254 ± 0.005 PRL 128 (2022) 191803 0.2 HELAN SM Prediction R(D) = 0.299 ± 0.003 R(D*) = 0.254 ± 0.005 PRL 128 R(D*) = 0.254

- LFU in $b \to s\ell\ell$ decays
 - $-R \equiv \mathcal{B}(B \to X\mu^+\mu^-)/\mathcal{B}(B \to Xe^+e^-)$
 - R_K about 3.1 σ below SM (Run 1+2, 9fb⁻¹)
 - Updates in preparation on full data set:
 - R_{pK} , R_{ϕ} , $R_{K\pi\pi}$
 - unified analysis of R_K and R_{K^*} with more q^2 bins, will provide final result on Run 1 + Run 2

Lepton flavour (number) violation

• Search for $B_{(s)}^0 \to p\mu^-$ (also Baryon number violating)

$$\mathcal{B}(B^0 \to p \mu^-) < 2.6(3.1) \times 10^{-9} \ @90\% (95\%) \ \mathrm{C.L.}$$

$$\mathcal{B}(B_s^0 \to p\mu^-) < 1.2(1.4) \times 10^{-8} \text{ @}90\%(95\%) \text{ C.L.}$$

<u>LHCb-PAPER-2022-022</u> (in preparation)

• Search for $B^0 \to K^{0*} \tau^{\pm} \mu^{\mp}$

- partial $\tau^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-} (\pi^{0}) \bar{\nu}_{\tau}$ reconstruction

$$\mathcal{B}(B^0 \to K^{*0} \tau^+ \mu^-) < 1.0(1.2) \times 10^{-5} @90\%(95\%) \text{ C.L.}$$

$$\mathcal{B}(B^0 \to K^{*0} \tau^- \mu^+) < 8.2(9.8) \times 10^{-6} @90\%(95\%) \text{ C.L.}$$

<u>LHCb-PAPER-2022-021</u> (in preparation)

• Search for $B^0 \to K^{0*} \mu^{\pm} e^{\mp}$ and $B_s^0 \to \phi \mu^{\pm} e^{\mp}$

$$\mathcal{B}(B^0 \to K^{*0} \mu^+ e^-) < 5.7(6.9) \times 10^{-9} @90\%(95\%) \text{ C.L.}$$

$$\mathcal{B}(B^0 \to K^{*0} \mu^- e^+) < 6.8(7.9) \times 10^{-9} @90\%(95\%) \text{ C.L.}$$

$$\mathcal{B}(B^0 \to K^{*0} \mu^{\pm} e^{\mp}) < 10.1(11.7) \times 10^{-9} \ @90\% (95\%) \ \mathrm{C.L.}$$

$$\mathcal{B}(B_s^0 \to \phi \mu^{\pm} e^{\mp}) < 16.0(19.8) \times 10^{-9} @90\%(95\%) \text{ C.L.}$$

LHCb-PAPER-2022-008

 \rightarrow L. Bian in parallel sessions

Electroweak, heavy ions and fixed target

W mass and Z production

$m_W = 80354 \pm 23_{\rm stat} \pm 10_{\rm syst} \pm 17_{\rm th} \pm 9_{\rm PDF} \text{ MeV}$

Z production in pp collisions at 13TeV

Z production in pPb collisions at 8.16TeV

 \rightarrow M. Ramos Pernas & D. Lucchesi in parallel sessions

Heavy ions and fixed target

• Several results from rich heavy-ion physics programme

Charmonium production in PbPb at 8.16TeV

• SMOG

- gas injection system for fixed-target physics
- New results
 - \bar{p} production in pHe at 110GeV
 - charmonia production in pNe at 68.5GeV
 - J/Ψ production in PbNe at 68.5GeV

<u>LHCb-PAPER-2022-014</u> (in preparation) <u>LHCb-PAPER-2022-011</u> (in preparation)

Z production in pPb at 8.16TeV

\bar{p} production in pHe at 110GeV

LHCb-PAPER-2022-006

Beyond LS2

LHCb upgrade I (Runs 3+4)

• Major upgrade of all sub-detectors

$$\rightarrow \mathcal{L}_{\text{peak}} = 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$$
pile-up ≈ 5

 \rightarrow fully software trigger for 40MHz readout

- New pixel-detector **VELO**
- New **RICH** mechanics, optics, photodetectors
- New Silicon strip upstream tracker **UT** (installation at end of year)
- New **SciFi** tracker
- New electronics for **MUON** and **CALO**
- New luminometer **PLUME**

Installed for operations in Run 3

Upgrade I: VELO

CERN-LHCC-2013-021

- Vertex pixel detector, 5mm from beam
 - innovative microchannel CO₂ cooling
- Installation completed in May
- Commissioning progressing very well!
 - in process of calibration, time and spatial alignment, tuning, while maintaining detector safety

VELO installation

Upgrade I: UT and SciFi CERN-LHCC-2014-001

- UT Silicon strips tracker upstream of magnet
 - Silicon strip detector with integrated cooling
 - 68 staves, arranged in 4 planes
 - assembly ongoing, installation at end of year (not essential for early physics operation)
- SciFi tracker downstream of magnet
 - scintillating fibres readout by SiPMs
 - 340m², 11'000 km scintillating fibres
 - 4096 128-channel SiPMs
 - fully installed for Run 3

Upgrade I: RICH 1+2 CERN-LHCC-2013-022

- Particle identification system essential for flavour physics programme
 - new MaPMTs with increased granularity
 - 40MHz readout electronics
 - new RICH1 mirrors with increased focal length $\Rightarrow 1/2$ occupancy
 - installed for Run 3

RICH 1 MaPMTs after installation (upper side)

RICH 2 MaPMTs

BOLOG Upgrade I: CALO, MUON, PLUME, ...

- CALO + MUON: existing detectors + new electronics \rightarrow 40MHz
- Shashlik calorimeters ECAL & HCAL
- MUON

CERN-LHCC-2013-022

- 4 MWPC layers
- iron filters
- New luminometer: PLUME
 - quartz tablets readout with PMT CERN-LHCC-2021-002
 - per-bunch luminosity measurement
- SMOG2 gas target
 - for fixed-target physics
 - gas targets for He, Ne, Ar

 $(+ possibly H_2, D_2, N_2, Kr, Xe)$ CERN-LHCC-2019-005

 \rightarrow E. Spedicato in poster session & E. Graverini in parallel sessions

<u>Upgrade I: Fully software trigger</u>

• All subdetectors read out at $40 \text{MHz} \rightarrow \text{full software trigger}$

<u>CERN-LHCC-2014-016</u> <u>CERN-LHCC-2020-006</u>

- 30MHz of inelastic collisions reduced to 1MHz in HLT1 (tracking +vertexing+muon ID)
 - running on GPUs
- Hadronic yield ×10 relative to Run 2

Highest throughput of any HEP experiment

 \rightarrow Ch. Agapopoulou in parallel sessions

First data at 13.6TeV

LHCb at HL-LHC (LS4)

- $\mathcal{L}_{\text{peak}} = 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$, $\mathcal{L}_{\text{int}} \simeq 300 \text{fb}^{-1}$ (Run 5+6), Pile-up ~ 40
- Starting R&D phase of new technologies
 - precision timing for tracking and PID
 - extreme radiation hardness
 - low-cost monolithic pixels
 - cryogenic cooling (for SiPMs)

 \rightarrow LHCb welcomes new collaborators!

LHCC-2021-012

PROVIE

 Unprecedented sensitivity expected for flavour physics and beyond

bridge to future

accelerators

Summary

- Broad physics programme at LHCb
 - Flavour physics, spectroscopy, electroweak, dark sector, heavy ions...
- New upgrade I detector starting NOW!
 - recorded first collisions at 13.6 TeV
- Planning for the future:
 - Upgrade II detector: FTDR approved
 - \rightarrow R&D towards subdetector TDRs

