

Outline

- CMS Status and Run-3 startup
- Highlights from recent physics results
- Future prospects

What's new since Run-2

Replaced with an entirely new one compatible with the future tracker upgrade for HL-LHC, improving the vacuum and reducing activation.

PIXEL TRACKER

All-new innermost barrel pixel layer, in addition to maintenance and repair work and other upgrades.

BRIL

New generation of detectors for monitoring LHC beam conditions and luminosity.

CATHODE STRIP CHAMBERS (CSC)

Read-out electronics upgraded on all the 180 CSC muon chambers allowing performance to be maintained in HL-LHC conditions.

HADRON CALORIMETER

New on-detector electronics installed to reduce noise and improve energy measurement in the calorimeter.

SOLENOID MAGNET

New powering system to prevent full power cycles in the event of powering problems, saving valuable time for physics during collisions and extending the magnet lifetime.

GAS ELECTRON MULTIPLIER (GEM) DETECTORS

An entire new station of detectors installed in the endcap-muon system to provide precise muon tracking despite higher particle rates of HL-LHC.

Run-3: all systems go

SiStrip Clusters

Cathode Strip Chamber (CSC) rechit occupancy

Run 3: first beams, first physics

measured hit residual Detector alignment with cosmics and early 900 GeV collisions

Run3 luminosity measurement

Aligned modules

$$D^* \rightarrow D^0 \pi_s$$

Physics Highlights (from Run-2)

Precisely measuring "all" top masses

- Direct measurement with 5D fit constraining jet uncertainty from W peak
 - $o m_{\rm t} = 171.77 \pm 0.38 \, {\rm GeV}$
- Measurement from tt+jet cross section
 - o $m_t^{\text{pole}} = 172.94 \pm 1.37 \,\text{GeV}$
- Measurement of mass distribution and m_t in hadronic decay to boosted jets
 - o m_t = 172.76 ± 0.81 GeV

Ten years since Higgs boson discovery

HIGGS boson

nature		
Explore content ~	About the journal v	Publish with us ~
nature > articles >	article	
Article Open Acces	ss Published: 04 July	2022
	of the Higgs fter the disc	boson by the CMS experiment overy
The CMS Collaborat	<u>ion</u>	

- Combination of multiple results fitting for *coupling modifiers*
- Combination of HH results for the three most sensitive channels (4b, 2b2_T, 2b2_Y)
 - Reaching ~3x SM sensitivity, expect SM sensitivity with HL-LHC
- See our Nature paper for more details and Chiara's talk tomorrow

Higgs coupling to charm

- Coupling to charm is extremely challenging to be measured at SM value
- CMS developed new charm tagging techniques for resolved and boosted jets
- current analyses (VH and boosted-ggH) sensitive to NP that would increase the coupling to charm (~10x SM sensitivity)

Calibration candle is the Z→cc decay

Bonus:

Both analyses observed the $Z\rightarrow cc$ decay with > 5σ

New physics searches with Higgs

- Search for resonances (X) decaing to H/Y(bb)H(γγ)
- Excess at (125,90) with 650 GeV heavy resonance mass
 - \circ 3.8 σ local, 2.8 σ global
- Interesting pair of numbers (caveat: cherry picking here, do not attempt back of the envelope combinations)
 - \circ H $\rightarrow \tau\tau$ 90-100 GeV excess: 3.1 σ local, 2.7 σ global
 - H \rightarrow WW 650 GeV excess: 3.8 σ local, 2.6 σ global
 - $H\rightarrow$ γγ 95 GeV excess: 2.8 σ local, 1.3 σ global
- Stay tuned for more Run-2 and Run-3 analyses

Exploiting the Precision Proton Spectrometer

- One or both protons can survive intact after an LHC interaction
- Deviation from LHC orbit allows to measurement momentum loss
- Knowing proton momentum allows to close the event kinematics
- Paper on calibration of the PPS (timing and alignment) recently published by CMS and TOTEM collaborations
- Physics calibration comparing di-lepton events independent reconstruction via PPS and in the central CMS detector

Both protons remaining intact

only one proton remaining intact

$$\xi = (p_{\text{nom}} - p) / p_{\text{nom}}$$

LHC: the Large pHoton Collider

- Exploiting PPS or Heavy Ion runs we can use LHC as a photon-photon collider!
- Multiple results from direct search for new physics to limits on anomalous couplings obtained with this techniques in the past months

LHC: the Large gauge Bosons Collider

- LHC can also be used as a gauge bosons collider to study Vector Boson Scattering/Fusion processes
 - CMS reports observation of W+gamma EW production
- Pure electroweak processes
- Charateristic signature of 2 jets with large m_{ii} and rapidity gap
- Access to anomalous tri/quadrilinear couplings

Expected. limit	Observed. limit	$U_{\rm bound}$
$-5.1 < f_{M0}/\Lambda^4 < 5.1$	$-5.6 < f_{M0}/\Lambda^4 < 5.5$	1.7
$-7.1 < f_{M1}/\Lambda^4 < 7.4$	$-7.8 < f_{M1}/\Lambda^4 < 8.1$	2.1
$-1.8 < f_{M2}/\Lambda^4 < 1.8$	$-1.9 < f_{M2}/\Lambda^4 < 1.9$	2.0
$-2.5 < f_{M3}/\Lambda^4 < 2.5$	$-2.7 < f_{M3}/\Lambda^4 < 2.7$	2.7
$-3.3 < f_{M4}/\Lambda^4 < 3.3$	$-3.7 < f_{M4}/\Lambda^4 < 3.6$	2.3
$-3.4 < f_{M5}/\Lambda^4 < 3.6$	$-3.9 < f_{M5}/\Lambda^4 < 3.9$	2.7
$-13 < f_{M7}/\Lambda^4 < 13$	$-14 < f_{M7}/\Lambda^4 < 14$	2.2
$-0.43 < f_{T0}/\Lambda^4 < 0.51$	$-0.47 < f_{T0}/\Lambda^4 < 0.51$	1.9
$0.27 < f_{T1}/\Lambda^4 < 0.31$	$-0.31 < f_{T1}/\Lambda^4 < 0.34$	2.5
$0.72 < f_{T2}/\Lambda^4 < 0.92$	$-0.85 < f_{T2}/\Lambda^4 < 1.0$	2.3
$0.29 < f_{T5}/\Lambda^4 < 0.31$	$-0.31 < f_{T5}/\Lambda^4 < 0.33$	2.6
$0.23 < f_{T6}/\Lambda^4 < 0.25$	$-0.25 < f_{T6}/\Lambda^4 < 0.27$	2.9
$-0.60 < f_{T7}/\Lambda^4 < 0.68$	$-0.67 < f_{T7}/\Lambda^4 < 0.73$	3.1

Measurement of W+charm production

- Final state with leptonic decay of W
- Tagging charm jet with secondary vertex or muon in jet
- This new measurements will allow to strongly constrained the s quark PDF

SV

Direct search for new physics: Vector-like quarks

SUSY: compressed stop decays

- $\Delta m < m_W \Rightarrow$ four body decay allowed
 - Jet + missing energy + soft leptons
- Trained BDT for different Δm hypotheses
- Slight excess (2.5σ local) at low Δm

Searches related to b-anomalies with T

- Final states with τ+ν, τ+b and ττ are investigated
- Good probe of models related to b-anomalies (e.g. leptoquark)
- Sensitivity approaching the "preferred" region from b-anomalies in some LQ models
- Some sizeable excess in non-resonant **tr** final state (seen by two different analyses)

Full Run 2 result on B_s→µµ

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left[3.95^{+0.39}_{-0.37} (\text{stat})^{+0.29}_{-0.24} (\text{syst})\right] \times 10^{-9}$$

- Updated results with full Run-2 luminosity
- Most precise single experiment measurement to date
 - Highly compatible with SM prediction
- Most precise measurement of lifetime

..if you missed the parallel
Dedicated CERN
Seminar on July 26th

J/ψ J/ψ resonances

	BW1	BW2	BW3
m	$6552 \pm 10 \pm 12$	$6927 \pm 9 \pm 5$	$7287 \pm 19 \pm 5$
Γ	$124\pm29\pm34$	$122\pm22\pm19$	$95\pm46\pm20$
N	474 ± 113	492 ± 75	156 ± 56

- Study spectrum of J/psi pairs mass
- Three clear peaks visible
- Central one compatible with <u>LHCb</u> X(6900)
- Fit model including interference to be finalized
- The three resonances are compatible with some recent predictions of tetraquarks states around the X(6900)

Triple J/ψ and WW Double Parton Scattering

Pinning down the Standard Model of Heavy Ion collisions

More results

Future prospects

Short term future

- (secret revealed) we are working on a W mass analysis: W-like Z mass at end of Run-1, W-helicity paper in Run-2, ...
- Run-2 data analysis is not over (not just W mass!)
- Exciting new things with Run-3 data: new triggers deployed, scouting (high rate trigger-objects analysis) and parking (opportunistic reco)
- Pushing the limits of scientific computing: > 1 billion **fully-simulated (GEN to RECO)** events produced every week, ubiquitous Machine Learning applications, streamlining the analysis process, heterogeneous computing (GPU in use at HLT for Run-3)

Longer term future

L1-Trigger HLT/DAQ

https://cds.cern.ch/record/2714892 https://cds.cern.ch/record/2759072

- Tracks in L1-Trigger at 40 MHz
- PFlow selection 750 kHz L1 output
- HLT output 7.5 kHz
- · 40 MHz data scouting

https://cds.cern.ch/record/2283187

- · ECAL crystal granularity readout at 40 MHz with precise timing for e/v at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to η ≃ 3

https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

Beam Radiation Instr. and Luminosity http://cds.cern.ch/record/2759074

. Bunch-by-bunch luminosity measurement: 1% offline, 2% online

- Si-Strip and Pixels increased granularity
- . Design for tracking in L1-Trigger
- Extended coverage to n = 3.8

MIP Timing Detector

https://cds.cern.ch/record/2667167

Precision timing with:

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

CMS

Phase 2 Upgrade in a few pictures

GE2/1 demonstrator

TFPX dee with the 10-portcards revised cartridge

Conclusions

- CMS is ready to take Run-3 data
- Run-2 is a fantastic dataset many analyses still ongoing, CMS keep publishing ~80 analysis per year
- "If at the end of Run-2 you will see no 3 sigma deviations, you will never discover anything new, until at least HL-LHC" (anonymous)
 - => multiple 2-3 sigma tensions, it will be fun understanding what they are (Bad background models? Statistical fluctuations? New physics?)
- Direct access to models explaining b-anomalies
- Ten years after discovery, Higgs physics still very interesting (including some of the tensions)
- Preparing for HL-LHC: a lot of new detectors to finalize, prototype, build and test

