

The Phase 2 upgrade of the CMS Inner tracker

Sergio Sánchez Cruz for the CMS tracker collaboration

Introduction

High luminosity LHC features

- pp collisions up to 14 TeV
- 5 to 7.5 x 10³⁴ cm⁻²s⁻¹
- Total integrated luminosity 3000/4000 fb⁻¹
- Up to 200 simultaneous interactions

Ultimate physics performance, but

- Harsher data-taking conditions
- Radiation dose and detector fluence ~10 times higher
- 750 kHz L1 rate
- ~4 times longer L1 latency

We aim to maintain or improve the detector performance up to 200 interactions

The tracker upgrade

- Being the closest detector to the interaction point, the current system cannot withstand the HL-LHC running conditions
- Both CMS' inner and outer tracker systems will be fully replaced

- Acceptance increased to |eta| < 4
- At least 4 layers with at least one hit in all the acceptance

The tracker upgrade

- Larger fluence → 2.6 x 10¹⁶n_{eq}
- TID \rightarrow 1.5 Grad
- Higher hit rate → 3 GHz / cm²

• Larger detector granularity \rightarrow 100 μ m x 25 μ m pixels

- Detector occupancy at the permile level
- 4.9 m² active detector → 5 times wrt Phase-1
- Similar material budget wrt Ph-1 detector
- Using n-in-p silicon hybrid sensors
- Using planar or 3D sensors depending on the layer

- Phase-1 Tracker

Pixel modules

Pixel sensors

- System will use both planar and 3D sensors
- Using 100x25 µm² pixels
- n-in-p planar sensors (150 µm thickness):
 - Bitten implant, no punch-through bias dot
 - High bias (0.6 0.8 kV) needed for efficient charge collection
 - Used in most of the detector
- 3D sensors
 - Lower bias (~150 V at the end of the lifetime)
 needed for efficient charge collection
 - Enhanced radiation hardness
 - Lower power consumption
 - Less homogeneous electric field
 - Complex fabrication → lower production yield
 - Used in the first barrel layer

25x100 μm² pixel cell with bitten implant

Readout chip

- CMS Readout chip (CROC) developed in the RD53 collaboration (ATLAS & CMS)
- Bump-bonded to the sensor

ROC features

- > 500 Mrad radiation tolerance
- 3 GHz/cm² hit rate
- Noise occupancy 10⁻⁶

- developed in 65 nm CMOS tech
- large current consumption → 1 W/cm²

RD53A (400x192)

- Half-size demonstrator
- 3 analog front-ends
- 2 readout architectures
- Submitted in Aug 2017

- Linear front-end
- Submitted on June 2021

Serial powering

- Total power consumption of pixels: 50 kW → parallel powering would need huge material budget
 - Modules are powered in series
 - 500 power chains, with up to 12 modules each
 - Each power chain is supplied with constant current
- In-chip shunt-LDO regulator used in the powering
 - Shunt allows serial powering
 - LDO regulators provide the constant voltage
- HV voltage is provided in parallel for each chip

Technical challenge → first time serial powering used at this scale

- Serial chains up to 9 modules fully tested
- Studies with up to 12 modules ongoing and looking promising

Sensors - Performance

Performance of 3D CNM sensor

- Irradiated up to 1.8x10¹⁶ n_{eq}/cm²
 Bias threshold set to ~1600 electrons
- >98% efficiency at 170 V bias voltage
- CO₂ cooling operating T~ -33 °C → no risk of thermal runaway

Performance of planar HPK sensor

- irradiated up to 2x10¹⁶ n_{eg}/cm²
- Safe operation up to 600 V, cooling not feasible for 800 V

Page 9

Readout chip performance

- 4 bit digital readout with selectable 6-to-4 bit dual slope ToT mapping for charge compression
- Bias threshold in ROC allows to fix charge threshold
- Additional per-pixel configuration allows to uniformize threshold and mitigate performance difference

Page 10

System readout - portcard

- Signal is readout through short (< 0.5 m) electric cables
- Portcard located in the detector periphery → optical conversion
- Data is sent to/from the control room through optical links
- Portcard contains → 3 IpGBT + 3 VTRx, powered with DCDC converters

System performance - signal integrity

TBPX System

- Signal integrity as a function of driver strength
- Elinks robust to cross-talk effects from other signals

TEPX System R1

Detector mechanics

- Simple mechanics, allowing removal for maintenance
- Detector mechanics built in light carbon fiber structure
- CO₂ evaporative cooling at -35°C distributed in stainless steel pipes
- Pipes embedded in the structure
- Allows to dissipate 50 kW power consumption of the whole system

More on temperature simulations in S. Liechti's poster

Performance of upgraded system

- Expected performance of inner+outer tracker determined in simulated muons
 - Very preliminary, not final version of the geometry
- Up to almost two times better impact parameter resolution and transverse momentum

Conclusions

- Ambitious upgrade of CMS pixel detector
- Harsh data taking conditions → high occupancy and irradiation
- Newly designed detector featuring:
 - Hybrid sensor technology
 - Higher granularity, larger buffers
 - Novel serial powering design
- First modules are being assembled → many performance studies ongoing
- New tracker design is resilient enough for the HL-LHC conditions
- Improved performance with respect to Phase-I detector

