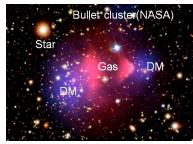
ELECTROWEAK PHASE TRANSITION WITH SCALAR PORTAL TO MAJORANA FERMION DARK MATTER

Simone Biondini

Department of Physics - University of Basel

July 8th, 2022

in collaboration with Philipp Schicho and Tuomas Tenkanen arXiv 2207....



BSM FOR COSMOLOGICAL EVIDENCES

 Beyond the Standard Model Physics is required for Baryon Asymmetry in the Universe (BAU) and Dark Matter (DM)

$$\eta = \frac{n_B}{n_\gamma} = (6.21 \pm 0.16) \times 10^{-10} \; , \quad \Omega_{\rm DM} \, h^2 = 0.1200 \pm 0.0012$$

BSM FOR COSMOLOGICAL EVIDENCES

 Beyond the Standard Model Physics is required for Baryon Asymmetry in the Universe (BAU) and Dark Matter (DM)

$$\eta = \frac{n_B}{n_\gamma} = (6.21 \pm 0.16) \times 10^{-10} \; , \quad \Omega_{\rm DM} h^2 = 0.1200 \pm 0.0012$$

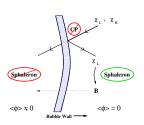
• Can a given BSM model account for both BAU and DM in some regions of the paramater space?

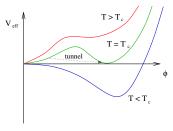
Examples: real/complex scalar extensions of the SM, Inert Doublet Model, ...

V. Barger et al [0811.0393]; J. R. Espinosa, T. Konstandin and F. Riva [1107.5441]; J. M. Cline and K. Kainulainen [1210.4196]

$$\mathcal{L}_{\text{int}}^{\text{BSM}} = -\lambda_{\phi s} \phi^{\dagger} \phi S^2$$
, S acts as DM and affect the EWPT

 New fields and interactions are included: how do they affect the thermal history of the Universe?


BARYON ASYMMETRY AND EWPT


SAKHAROV CONDITIONS

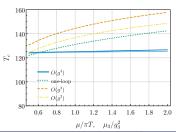
- B-number violation, C and CP violation, out-of-equilibrium dynamics
- a viable option for BAU is via Electro-Weak Baryogenesis (EWBG)

V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155 (1985)

successful EWBG requires a first-order electroweak phase transition

figures from E. Morrissey and M. J. Ramsey-Musolf 1206.2942

discontinuity of the $V(v_{\phi}, T)$ at $T = T_c$


EWPT AND 3-D REDUCED THEORIES

• Why not simply trust V(v, T) as derived in perturbation theory?

$$g^2 n_{\rm B}(m) = \frac{g^2}{e^{m/T}-1} \approx \frac{g^2 T}{m} \,, \quad {\rm actual \ expansion \ paramater \ } \epsilon \equiv \frac{g^2 T}{\pi m}$$

- relatively light d.o.f. interacting with the Higgs(es) should be studied non-perturbatively $[m \sim g^2 T]$ K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov [hep-ph/9508379]
- ullet appearance of odd powers in the couplings (due to $m_{
 m eff} \sim gT$)
- ullet impact on $V(v_\phi,T)$: one-loop $\mathcal{O}(g^4)$ leaves a strong- μ dependence

Required 2-loop calculation

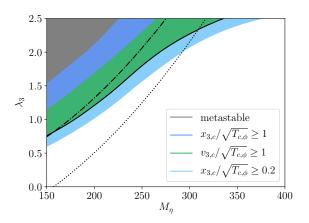
- πT and gT scales integrated out perturbatively
- work in the 3d theory for zero-mode of bosonic fields

figure from O. Gould and T. V. I. Tenkanen [2104.04399]

SIMPLIFIED DM MODEL

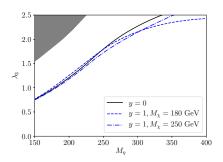
$$\mathcal{L}_{\chi} = rac{1}{2} ar{\chi} (\partial \!\!\!/ - \mu_{\chi}) \chi \; , \quad \mathcal{L}_{\eta} = (D_{\mu} \eta)^{\dagger} (D_{\mu} \eta) - \mu_{\eta}^2 \eta^{\dagger} \eta - \lambda_2 (\eta^{\dagger} \eta)^2 \; ,$$
 $\mathcal{L}_{\mathrm{portal}}^{\mathrm{portal}} = -\lambda_3 (\eta^{\dagger} \eta) (\phi^{\dagger} \phi) \; , \quad \mathcal{L}_{\mathrm{Vulcaws}}^{\mathrm{portal}} = -y \, ar{\chi} P_{\mathrm{R}} \, \ell \eta + \mathrm{h.c.}$

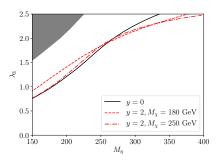
- RH-SM lepton \Rightarrow covariant derivative for η is $D_{\mu}\eta = (\partial_{\mu} ig_1 \frac{Y_{\eta}}{2} B_{\mu})\eta$
- model has ties with supersymmetry, however $\lambda_3 \approx \mathcal{O}(1)$ [necessary to affect the EWPT]
- DM energy density: both freeze-out and freeze-in
 - J. Bollig and S. Vogl 2112.01491; M. Garny, A. Ibarra and S. Vogl 1503.01500; S. Junius, L. Lopez-Honorez and A. Mariotti 1904.07513


Thermodynamics of the model

- we study the behaviour of the vev of the scalars (Higgs and η)
- ullet treat the scalar η as a light degree of freedom
- one loop matching for the hard scale and two loop of the soft scale [thermal masses];

for recent analyses and impact on phase transitions D. Croon, O. Gould, P. Schicho, T. V. I. Tenkanen and G. White [2009.10080]

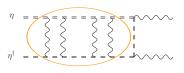



Result for y = 0

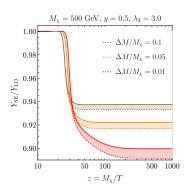
- ullet perturbative estimate via discontinuous background fields at the critical temperature $T_{c,\phi}$
- ullet dot-dashed line that corresponds to $\mu_\eta^2=0$ (strongest transition between gray area and this line)

Inclusion of the Majorana fermion

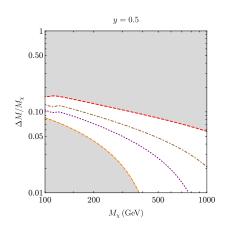
- regions above the contour lines $\frac{v_{c,\phi}}{T_{c,\phi}} > 1$ corresponds to a strong phase transition
- ullet $y \neq 0$ has a mild effect on the region of a strong transition [expected NLO effect]
- non trivial dependence on y and M_χ (more on next slides)

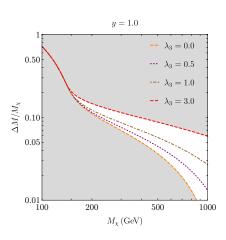

DM energy density via freeze-out

• effect of coannihilating states can be captured by a single Boltzmann equation

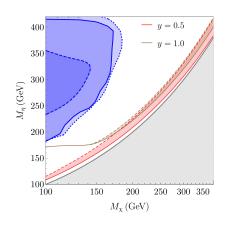

$$\frac{dn}{dt} + 3Hn = -\langle \sigma_{\rm eff} v \rangle (n^2 - n_{\rm eq}^2) , \quad \langle \sigma_{\rm eff} v \rangle = \sum_{i,j} \frac{n_i^{\rm eq} n_j^{\rm eq}}{(\sum_k n_k^{\rm eq})^2} \langle \sigma_{ij} v \rangle$$

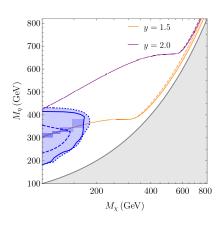
ullet total equilibrium abundance of χ and η : $n_{
m eq} = \int_{m p} {
m e}^{-E_{m p}/T} \left[2 + 2 \, {
m e}^{-\Delta M/T}
ight]$


$$\begin{split} \langle \sigma_{\mathsf{eff}} \mathsf{v}_{\mathsf{rel}} \rangle &\approx \langle \sigma_{\chi\chi} \mathsf{v}_{\mathsf{rel}} \rangle \\ &+ \langle \sigma_{\chi\eta} \mathsf{v}_{\mathsf{rel}} \rangle e^{-\Delta M/T} + \langle \sigma_{\eta\eta\dagger} \, \mathsf{v}_{\mathsf{rel}} \rangle e^{-2\Delta M/T} \end{split}$$

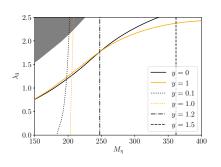


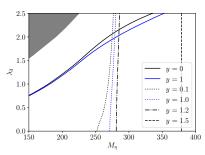
Sommerfeld effect and BSF


PARAMATER SPACE FOR DM

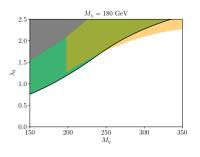


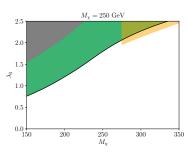
- $\chi\eta$ and $\eta\eta^{\dagger}$ processes are more relevant for smaller y
- λ_3 enters $\eta\eta^\dagger$ annihilations up to one-order of magnitude on the mass splitting $\Delta M/M_\chi$

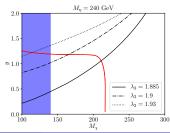

PARAMATER SPACE FOR DM



- ATLAS Collaboration search $2\ell+\not\!\!E_T$ 1908.08215, 1911.06660
- Drell-Yan production of $\eta\eta^\dagger$ and subsequent decays $\eta \to \chi + \ell$
- most (less) stringent limits from muons (taus)

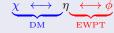

(M_{η}, λ_3) plane




- solid lines for EWPT: $v_c/T_{c,\phi}$; dashed, dotted and dot-dashed for DM
- ullet for $M_\chi \gtrsim 180$ GeV the line y=0.1 is an accumulation limit for the DM energy density
- larger M_χ imply larger $M_\eta \Rightarrow$ shrink the parameter space of FOPT and DM

(M_{η}, λ_3) and (M_{χ}, y)

- ullet non-trivial dependence of FOPT (M_χ,y,λ_3)
- ullet very small changes on λ_3 are
 - 1) important for thermodynamics of EWPT
 - 2) irrelevant for DM



Conclusions

BSM models may induce a strong first order EWPT and provide the correct DM energy density

$$\eta = \frac{n_B}{n_\gamma} = (6.21 \pm 0.16) \times 10^{-10} \; , \quad \Omega_{\rm DM} h^2 = 0.1200 \pm 0.0012 \label{eq:eta_def}$$

start the exploration of next-to-minimal models and make contact with DM simplified models

used dimensionally reduced EFTs: perturbative matching at the hard and soft scale

$$\pi T \gg gT \gg g^2 T$$
: taken care of IR-sensitivity and μ -dependence

- ullet for DM inclusion of Sommerfeld and bound-state effects (moderate for this model $\sim \mathcal{O}(15\%)$)
- including limits from collider searches: DM and FOPT for $\frac{180 \text{ GeV}}{180 \text{ GeV}} < \frac{M_{\chi}}{2} \lesssim \frac{300 \text{ GeV}}{1000 \text{ GeV}}$
- Future directions: (i) extend the investigation to larger M_η and M_χ : integrate out $M_\eta \sim \pi T$ (ii)contact with GWs production; (iii) look at other DM simplified models