

Searches for additional charged and neutral Higgs bosons in ATLAS

Trisha Farooque Michigan State University

ICHEP 6-13 July,2022, Bologna

Introduction

- Discovery of (the) Higgs boson was major milestone in particle physics
 - Major evidence in support of Standard Model (SM)
- "The" Higgs boson?
 - Many puzzles remain unsolved in SM
 - Hierarchy problem
 - Baryon asymmetry
 - Dark matter
 -
 - Many extensions of the SM propose additional neutral and charged Higgs bosons
 - E.g. a⁰,h⁰,A⁰,H⁰,H[±] predicted in Two-Higgs
 Doublet Models (2HDM)
- This talk summarises recent ATLAS searches for these additional scalar particles

ATLAS-HDBS-2020-19

A->Z(ll/vv)h(bb)

- Search for pseudoscalar (A) in ggF or b-associated production; decaying to Z boson and SM Higgs boson
 - Interpreted in Type-I, Type-II, Lepton-specific and Flipped 2HDM models
 - Also constrained Z'/W' production in Heavy Vector Triplet (HVT) model

ATLAS-HDBS-2020-19

A->Z(ll/vv)h(bb)

- Search for pseudoscalar (A) in ggF or b-associated production; decaying to Z boson and SM Higgs boson
 - Interpreted in Type-I, Type-II, Lepton-specific and Flipped 2HDM models
 - Also constrained Z'/W' production in Heavy Vector Triplet (HVT) model

- Signal regions split by lepton Multiplicity
 - 0-lepton channel targeting Z->νν decay
 - 2-lepton channel targeting Z->{{ decay
- Further splitting into regions with resolved and boosted H->bb decay
- Likelihood fit on signal discriminant: Transverse (0-lepton) or invariant (2-lepton) mass of Zh system

ATLAS-HDBS-2020-19

- No significant excess
- Largest deviation at 500 GeV
 - Local significance 2.1σ in ggA, 1.6σ in bbA
- More sensitive at high tan(β) for Type-II model due to larger bbA cross section
 - Low sensitivity in alignment limit $cos(β-α) \rightarrow 0$ due to vanishing A->Zh branching ratio

Flavourful 2HDM

- Multilepton channel (2LSS, 3L, >=4L)
- Final states containing two to four top^{*} quarks
- First analysis to target BSM production of 3top final states
 - Targets general 2HDM with FCNH couplings (ρ_{tu} , ρ_{tc} , ρ_{tt}) of the heavy Higgs bosons
 - $\circ ~~\rho_{tt}$ and ρ_{tc} can explain baryon number asymmetry

Flavourful 2HDM

- Multilepton channel (2LSS, 3L, >=4L)
- Final states containing two to four top³ quarks
- First analysis to target BSM production of 3top final states
 - Targets general 2HDM with FCNH couplings (ρ_{tu} , ρ_{tc} , ρ_{tt}) of the heavy Higgs bosons
 - ρ_{tt} and ρ_{tc} can explain baryon number asymmetry
- Signal regions based on lepton multiplicities and output of multi-output deep neural network (DNN) classifier
 - Likelihood fit on score of second DNN used to discriminate signal from background in each category
- Backgrounds calibrated in dedicated control regions

Flavourful 2HDM

- No significant excess over SM background
- Most significant deviation observed at m_{H} =1 TeV and ρ_{tt} =0.2, ρ_{tc} =0.3, ρ_{tu} =0.24 \circ Deviation is asymmetric in lepton charge
- Local significance 2.81σ
- Results also interpreted in RPV SUSY model

ATLAS-CONF-2022-039

WH(WW)

- Associated production of heavy scalar (H) with W boson
 - Complementary to gluon-gluon fusion searches
 - Involves top loop ⇒ reduced fermionic coupling would render ggF channel insensitive
 - Larger cross sections than VBF and smaller backgrounds

WH(WW)

- Associated production of heavy scalar (H) with W boson
 - Complementary to gluon-gluon fusion searches
 - Involves top loop ⇒ reduced fermionic coupling would render ggF channel insensitive
 - Larger cross sections than VBF and smaller backgrounds
- Generic search in SS2L signature
- Dominant background: SM diboson production

Selections	Boosted SR		Resolved SR s	ssWW CR	Boosted WZ CR		Resolved WZ CR					
Trigger	Single lepton											
Leptons	two sa	me-	sign leptons with	three leptons with								
	$p_{\rm T} > 27, 20 { m ~GeV}$					$p_{\rm T} > 27, 20, 20 { m GeV}$						
				at least one SFOS lepton pair								
	zero additional veto leptons											
$m_{\ell\ell}$		>	100 GeV	-								
$m_{\ell\ell\ell}$			-	> 100 GeV								
<i>b</i> -jets	zero b-tagged small-R jets											
$E_{\rm T}^{\rm miss}$	> 80 GeV		> 60 GeV		> 40 GeV							
Large-R jets	at least one large-R jet with		zero large-R jets with	h	at lea	ast one large-R jet with	zero large-R jets with					
	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$		$p_{\rm T}$ > 200 GeV, $ \eta < 2.0$			$> 200 \text{ GeV}, \eta < 2.0$	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$					
	$50 \text{ GeV} < m_J < 200 \text{ GeV}$		$50 \text{ GeV} < m_J < 200 \text{ GeV}$			GeV $< m_J < 200 \text{ GeV}$	$50 \text{ GeV} < m_J < 200 \text{ GeV}$					
	and pass 80% W-tagger WP				and pass 80% W-tagger WP							
Small- <i>R</i> jets	-		at least two small-R jets	with		9 5 5	at least two small-R jets with					
			p_{T} > 20 GeV and $ \eta $ <	2.5			$p_{\rm T} > 20$ GeV and $ \eta < 2.5$					
m_{jj}	la l	5	$50 \text{ GeV} < m_{jj} < 110 \text{ GeV} > 200 \text{ GeV}$			-	a tă					

- Binned likelihood fit on "effective mass" (m_{eff}) distribution in signal regions and total yield in control regions
- Limits set on BSM HVV coupling strengths in an Effective **Field Theory**

```
ρ_{H} = sin(β-α) in 2HDM models
f_{W}, f_{WW} = anomalous coupling to W
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 200 June 100 June 100
\frac{\rho_{\rm H}^{\rm f_{\rm WW}}}{12}
                                                                                                                                                                                                                                                                                                                                                                                                   TeV
                                                                                                                                                                                                                                                                                                                                                                                                                                                              ATLAS Preliminary
                                                                               ATLAS Preliminary
                                                                                                                                                                                                                          --- Expected limit
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             --- Expected limit
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ATLAS Preliminary
                                                                                 √s = 13 TeV. 139 fb<sup>-1</sup>
                                                                                                                                                                                                                             - Observed limit
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 √s = 13 TeV. 139 fb<sup>-1</sup>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             - Observed limit
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            = 13 TeV, 139 fb
                                                                                                                                                                                                                                                                                                                                                                                    P<sub>H</sub>fww
                                                                                                                                                                                                                                  Expected ± 1σ
                                                                                                                                                                                                                                                                                                                                                                                                                           20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Expected \pm 1\sigma
                                                                                                                                                                                                                                                                                                                                                                                                                                                          m. = 600 GeV
                                                                              m., = 300 GeV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Expected ± 1σ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              = 900 GeV
                                                                                                                                                                                                                                          Expected ± 2σ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Expected ± 2σ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               10
                                                -5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -10
                                     -10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -20
                                                                                                                                                                                                                                                                         ρ<sub>H</sub>w/<sub>H</sub> [TeV<sup>-2</sup>]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           [TeV
```


Observed limit

Expected $\pm 2\sigma$

 $\frac{4}{\rho_{H}^{f}}$ 6

[TeV-2

FCNC top quark decay t->qX(bb); q=u,c

- Search for FCNC decay of top quark t->qX in ttbar events
 - X: light scalar with flavour charge (*flavon*); X->bb dominant decay for masses below 200 GeV

ATLAS-CONF-2022-027

FCNC top quark decay t->qX(bb); q=u,c

- Search for FCNC decay of top quark t->qX in ttbar events
 - X: light scalar with flavour charge (*flavon*) ; X->bb dominant decay for masses below 200 GeV
- Signal discrimination using NN trained on jet, lepton kinematics and b-tagging information

ATLAS-CONF-2022-027

FCNC top quark decay t->qX(bb); q=u,c

- Search for FCNC decay of top quark t->qX in ttbar events
 - X: light scalar with flavour charge (*flavon*) ; X->bb dominant decay for masses below 200 GeV
- Signal discrimination using NN trained on jet, lepton kinematics and b-tagging information
- Profile likelihood fit on NN score across [4-6]j3b signal regions and total yield in [4-6]j>=4b background control regions

FCNC top quark decay t->qX(bb); q=u,c

- No significant excess observed
- Small deviation in observed limit for t->cX process but not for t->uX
 - Both processes have similar kinematics
 - Difference arises in flavour and b-tagging score of 4th jet

ATLAS-CONF-2022-027

- Light *axion-like particle* (*ALP*) with gluon coupling
 - Abundant production in pp collisions
 - Diphoton decay suppressed, but favourable search channel due to clean signature

- Light *axion-like particle* (*ALP*) with gluon coupling
 - Abundant production in pp collisions
 - Diphoton decay suppressed, but favourable search channel due to clean signature
- Low mass X->yy search affected by trigger threshold
 - Mitigated by selecting boosted close-by photon pairs with pT>50 GeV
 - Search reaches down to 10 GeV resonance mass

- Light *axion-like particle* (*ALP*) with gluon coupling
 - Abundant production in pp collisions
 - Diphoton decay suppressed, but favourable search channel due to clean signature
- Low mass X->γγ search affected by trigger threshold
 - Mitigated by selecting boosted close-by photon pairs with pT>50 GeV
 - Search reaches down to 10 GeV resonance mass

- Signal discriminant: invariant mass of diphoton system
- Data-driven estimation of continuum SM background

19

- ical p-value Most significant deviation from background observed at 19.4 GeV
 - Local significance 3.05σ (global significance 1.48σ)
- Results interpreted as limits in the plane spanned by ALP mass (m₂) and decay constant(f_{α})
- Significantly extends previous limits at low m_a from complementary searches

H**H- -> 4l

- H⁺⁺/H⁻⁻ predicted by many BSM theories, e.g. Left-Right Symmetric (LRS) models, Type-II seesaw models, etc.
 - \circ $\,$ LH and RH chiralities
 - Decays to same-charge lepton pairs; LFV decays permitted

H⁺⁺H⁻⁻ -> 4l

- H⁺⁺/H⁻⁻ predicted by many BSM theories, e.g. Left-Right Symmetric (LRS) models, Type-II seesaw models, etc.
 - LH and RH chiralities \bigcirc
 - Decays to same-charge lepton pairs; LFV decays Ο permitted
- Signal regions separated by lepton multiplicities (2L, 3L, 4L)
 - $m(\ell^{\pm}, \ell'^{\pm})$ used as discriminant in 2L and 3L regions; total yield in 4L regions
- Main backgrounds: Diboson (DB), Drell-Yan (DY), fake lepton and charge mis-ID

H⁺⁺H⁻⁻ -> 4l

- Limits set on pair production cross section of H⁺⁺/H⁻, assuming democratic decays to lepton flavours
- Sensitivity driven by 4L channel
- Higher sensitivity to LH scalars, due to larger production cross section
- Combined lower mass limit at 1080 GeV

ttH/A->4tops

- Search for heavy scalar (H)/pseudoscalar (A) from 2HDM models
- H/A->tt decays dominate when m_{H/A} > 2m_{top} Inclusive searches for gg->H/A->tt difficult due to large negative interference with SM ttbar
 - Associated production with top quarks benefits from sizable cross section and low backgrounds 0

ttH/A->4tops

0

- Search for heavy scalar (H)/pseudoscalar (A) from 2HDM models
 - H/A->tt decays dominate when m_{H/A} > 2m_{top}
- Inclusive searches for gg->H/A->tt difficult due to large negative interference with SM ttbar
 - Associated production with top quarks benefits from sizable cross section and low backgrounds
- Search performed in SS+3L channel
- Two BDTs used for signal discrimination:
 - SMBDT to discriminate SM 4tops from other SM background
 - Used to define BSM signal region
 - Parameterised BSM BDT to discriminate BSM 4tops from SM background
 - Discriminant in likelihood fit

					_[
Region	Channel	$N_{ m j}$	$N_{\rm b}$	Other selection cuts		Fitted variable
CR Conv	$e^{\pm}e^{\pm} \mid\mid e^{\pm}\mu^{\pm}$	$4 \leq N_j < 6$	≥ 1	$m_{ee}^{CV} \in [0, 0.1] \text{ GeV}$ 200 < H_{T} < 500 GeV		$m_{ee}^{\rm PV}$
CR HF e	eee eeµ		= 1	$100 < H_{\rm T} < 250 {\rm GeV}$		Yield
CR HF μ	еµµ µµµ		= 1	$100 < H_{\rm T} < 250 {\rm GeV}$		Yield
CR tīW	$e^{\pm}\mu^{\pm} \mid\mid \mu^{\pm}\mu^{\pm}$	≥ 4	≥ 2	$m_{ee}^{CV} \notin [0, 0.1] \text{ GeV}, \eta(e) < 1.5$ for $N_{b} = 2, H_{T} < 500 \text{ GeV}$ or $N_{j} < 6;$ for $N_{b} \ge 3, H_{T} < 500 \text{ GeV}$		$\sum p_{\mathrm{T}}^\ell$
CR lowBDT	SS+3L	≥ 6	≥ 2	$H_{\rm T} > 500 \text{ GeV}, \text{ SM BDT} < 0.55$	1	SM BDT
BSM SR	SS+3L	≥ 6	≥ 2	$H_{\rm T} > 500 \text{ GeV}, \text{ SM BDT} \ge 0.55$		BSM pBDT

ttH/A->4tops

- No significant excess above SM predictions
- Results interpreted in Type-II 2HDM model
 - SM 4-top contribution constrained to predicted cross section
 - tan(β) below 1.6 (0.6) excluded for $m_{A/H} = 0.4$ (1.0) TeV
 - Production of both A and H particles considered simultaneously

Conclusions

- New scalar particles are a key feature of many extensions of the Standard Model
- ATLAS has a broad programme of searches targeting scalar particles across a large mass range, including scalars with exotic charges
- No significant deviation from the Standard Model has been seen so far
 - Worthwhile to pay attention to a few mild excesses that have emerged in some channels
 - Looking forward to uncovering more of the phase space in the imminent Run-3!

